Bezafibrate increases prebeta 1-HDL at the expense of HDL2b in hypertriglyceridemia. (1/55)

Prebeta1-high density lipoprotein (prebeta1-HDL), the initial acceptor of cell-derived cholesterol, can be generated from HDL(2) by hepatic lipase. Because bezafibrate elevates lipase activity, it may increase prebeta1-HDL at the expense of HDL(2). To answer this question, we determined the apolipoprotein A-I (apoA-I) distribution in 20 hypertriglyceridemics (triglycerides>2.26 mmol/L) and 20 sex-matched normolipidemics by native 2-dimensional gel electrophoresis. At baseline, prebeta1-HDL was 70% higher in hypertriglyceridemics than in normolipidemics (123.5+/-49.9 versus 72.5+/-34.1 mg/L apoA-I, P<0.01). Prebeta1-HDL was positively correlated with triglyceride (r=0.624, P<0.0001). A 4-week bezafibrate treatment (400 mg daily) increased prebeta1-HDL by 30% (160.2+/-64.5 mg/L apoA-I, P<0.05) but decreased HDL(2b) by 31% (from 188.8+/-94.9 to 129.3+/-78.7 mg/L apoA-I, P<0.05). Hepatic lipase activity increased by 24% (P<0.005). Prebeta1-HDL was generated either from ultracentrifugally isolated HDL(2) or from plasma during incubation with triglyceride lipase. In conclusion, bezafibrate increases prebeta1-HDL at the expense of HDL(2). We speculate that such an effect might partly contribute to the antiatherogenic action of bezafibrate.  (+info)

A new sandwich enzyme immunoassay for measurement of plasma pre-beta1-HDL levels. (2/55)

Pre-beta1-HDL, a putative discoid-shaped high density lipoprotein (HDL) of approximately 67-kDa mass that migrates with pre-beta mobility in agarose gel electrophoresis, contains apolipoprotein A-I (apoA-I), phospholipids, and unesterified cholesterol. It participates in the retrieval of cholesterol from peripheral tissues. In this study we established a new sandwich enzyme immunoassay (EIA) for measuring plasma pre-beta1-HDL using mouse anti-human pre-beta1-HDL monoclonal antibody (MAb 55201) and goat anti-human apoA-I polyclonal antibody. MAb 55201 reacted with apoA-I in lipoprotein [A-I] with molecular mass less than 67 kDa, and with pre-beta1-HDL separated by nondenaturing two-dimensional electrophoresis, whereas it did not react with apoA-I in alpha-HDL. Pre-beta1-HDL levels measured by this method declined when incubated at 37 degrees C for 2 h, whereas this decrease was not observed in the presence of 2 mM lecithin:cholesterol acyltransferase inhibitor 5,5'-dithiobis (2-nitrobenzoic acid). To clarify the clinical significance of measuring pre-beta1-HDL by this method, 47 hyperlipidemic subjects [male/female 22/25; age 55 +/- 14 years; body mass index 25 +/- 4.5 kg/m(2); total cholesterol (TC) 245 +/- 64 mg/dl; triglyceride (TG) 232 +/- 280 mg/dl; HDL cholesterol (HDL-C) 51 +/- 23 mg/dl] and 25 volunteers (male/female 15/10; age 36 +/- 9.3 years; body mass index 23 +/- 3.5 kg/m(2); TC 183 +/- 28 mg/dl; TG 80 +/- 34 mg/dl; HDL-C 62 +/- 15 mg/dl) were involved. Plasma pre-beta1-HDL levels were significantly higher in hyperlipidemic subjects than in volunteers (39.3 +/- 10.1 vs. 22.5 +/- 7.5 mg/ml, P < 0.001) whereas plasma apoA-I levels did not differ (144.2 +/- 28.4 vs. 145.3 +/- 16.3 mg/dl). These results indicate that this sandwich EIA method specifically recognizes apoA-I associated with pre-beta1-HDL.  (+info)

Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. (3/55)

The extent to which plasma HDL concentration regulates reverse cholesterol transport (RCT) is not known. The principal acceptors of unesterified cholesterol (UC) from cultured cells are small pre-beta-HDL, which we have shown increase in plasma during intravenous infusion of apolipoprotein A-I/phosphatidylcholine (apoA-I/PC) discs in humans. We have now examined the effects on tissue fluid HDL and RCT. ApoA-I/PC or proapoA-I/PC discs were infused into 16 healthy males. Eleven had been given intravenous radiocholesterol to label tissue pools; in 12 prenodal leg lymph was collected throughout; and in 8 all feces were collected. The rise in small pre-beta-HDL in plasma was associated with increases in 1) pre-beta-HDL concentration in lymph (all subjects), 2) the size of other lymph HDL (four of four subjects), 3) the cholesterol content of lymph lipoproteins relative to plasma lipoproteins (P < 0.01, n = 4), 4) cholesterol-specific radioactivity in lymph (five of nine subjects), 5) plasma lathosterol (P < 0.004, n = 4), 6) plasma cholesterol esterification rate (P < 0.001, n = 4), and 7) fecal bile acid excretion (P < 0.001, n = 8). These results support the hypothesis that small pre-beta-HDL generated in plasma readily cross endothelium into tissue fluid, and thereby promote efflux of UC from peripheral cells. After delivery to the liver, peripheral cholesterol appears to be utilized more for bile acid synthesis than for biliary cholesterol secretion in humans.  (+info)

Evaluation of phospholipid transfer protein and cholesteryl ester transfer protein as contributors to the generation of pre beta-high-density lipoproteins. (4/55)

High-density lipoproteins (HDLs) are considered anti-atherogenic because they mediate peripheral cell cholesterol transport to the liver for excretion and degradation. An important step in this reverse cholesterol-transport pathway is the uptake of cellular cholesterol by a specific subclass of small, lipid-poor apolipoprotein A-I particles designated pre beta-HDL. The two lipid-transfer proteins present in human plasma, cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), have both been implicated in the formation of pre beta-HDL. In order to investigate the relative contribution of each of these proteins, we used transgenic mouse models. Comparisons were made between human CETP transgenic mice (huCETPtg), human PLTP transgenic mice (huPLTPtg) and mice transgenic for both lipid-transfer proteins (huCETPtg/huPLTPtg). These animals showed elevated plasma levels of CETP activity, PLTP activity or both activities, respectively. We evaluated the generation of pre beta-HDL in mouse plasma by immunoblotting and crossed immuno-electrophoresis. Generation of pre beta-HDL was equal in huCETPtg and wild-type mice. In contrast, in huPLTPtg and huCETPtg/huPLTPtg mice, pre beta-HDL generation was 3-fold higher than in plasma from either wild-type or huCETPtg mice. Our findings demonstrate that, of the two plasma lipid-transfer proteins, PLTP rather than CETP is responsible for the generation of pre beta-HDL. These data support the hypothesis of a role for PLTP in the initial stage of reverse cholesterol transport.  (+info)

Cellular cholesterol efflux. (5/55)

Efflux of free cholesterol (FC) continues even when cellular FC mass is unchanged. This reflects a recirculation of preformed FC between cells and extracellular fluids which has multiple functions in cell biology including receptor recycling and signaling as well as cellular FC homeostasis. Total FC efflux is heterogeneous. Simple diffusion to mature high density lipoprotein (HDL), mainly via albumin as intermediate, initiates FC net transport driven by plasma lecithin:cholesterol acyltransferase activity. A second major efflux component reflects protein-facilitated transport from cell surface domains (caveolae, rafts) driven by FC binding to lipid-poor, pre-beta-migrating HDL (pre-beta-HDL). Facilitated efflux from caveolae, unlike simple diffusion, is highly regulated. Neither ABC1 (the protein defective in Tangier disease) nor other ATP-dependent transporters now appear likely to contribute directly to FC efflux. Their role is limited to the initial formation of a particle precursor to circulating pre-beta-HDL, which recycles without further lipid input from ATP-dependent transporter proteins. Lipid-free apolipoprotein A-I, previously considered a surrogate for pre-beta-HDL, has a reactivity much lower than that of native lipoprotein FC acceptors.  (+info)

Delineation of the role of pre-beta 1-HDL in cholesterol efflux using isolated pre-beta 1-HDL. (6/55)

OBJECTIVE: The role of pre-beta1-high density lipoprotein (pre-beta1-HDL) in cholesterol efflux was investigated by separating human plasma into purified pre-beta1-HDL and pre-beta1-HDL-deficient plasma by using a monoclonal antibody specifically reacting with pre-beta1-HDL. METHODS AND RESULTS: When compared with whole plasma, pre-beta1-HDL-deficient plasma was equally efficient in promoting cholesterol efflux from human skin fibroblasts and THP-1 human macrophage cells. When added at the same apolipoprotein A-I concentration, pre-beta1-HDL was less effective than whole plasma in promoting cholesterol efflux from fibroblasts but equally effective in promoting cholesterol efflux from THP-1 cells. However, pre-beta1-HDL-deficient plasma reconstituted with 16% pre-beta1-HDL was more active than whole plasma, demonstrating that pre-beta1-HDL does promote cholesterol efflux actively. The amount of cellular cholesterol present in reisolated pre-beta1-HDL was 1.5- to 2-fold greater after incubation of the cells with whole plasma than after incubation of the cells with pre-beta1-HDL-deficient plasma or plasma treated with the anti-pre-beta1-HDL antibody. However, the anti-pre-beta1-HDL antibody did not inhibit cholesterol efflux. CONCLUSIONS: We conclude that whereas pre-beta1-HDL is capable of taking up cellular cholesterol, its presence in plasma is not essential for cholesterol efflux, at least in vitro. Instead, pre-beta1-HDL may be the first product of apolipoprotein A-I lipidation during the formation of HDL but may not play a major role in transferring cellular cholesterol to HDL.  (+info)

Degradation of phospholipid transfer protein (PLTP) and PLTP-generated pre-beta-high density lipoprotein by mast cell chymase impairs high affinity efflux of cholesterol from macrophage foam cells. (7/55)

Human atherosclerotic lesions contain mast cells filled with the neutral protease chymase. Here we studied the effect of human chymase on (i) phospholipid transfer protein (PLTP)-mediated phospholipid (PL) transfer activity, and (ii) the ability of PLTP to generate pre-beta-high density lipoprotein (HDL). Immunoblot analysis of PLTP after incubation with chymase for 6 h revealed, in addition to the original 80-kDa band, four specific proteolytic fragments of PLTP with approximate molecular masses of 70, 52, 48, and 31 kDa. This specific pattern of PLTP degradation remained stable for at least 24 h of incubation with chymase. Such proteolyzed PLTP had reduced ability (i) to transfer PL from liposome donor particles to acceptor HDL(3) particles, and (ii) to facilitate the formation of pre-beta-HDL. However, when PLTP was incubated with chymase in the presence of HDL(3), only one major cleavage product of PLTP (48 kDa) was generated, and PL transfer activity was almost fully preserved. Moreover, chymase effectively depleted the pre-beta-HDL particles generated from HDL(3) by PLTP and significantly inhibited the high affinity component of cholesterol efflux from macrophage foam cells. These results suggest that the mast cells in human atherosclerotic lesions, by secreting chymase, may prevent PLTP-dependent formation of pre-beta-HDL particles from HDL(3) and so impair the anti-atherogenic function of PLTP.  (+info)

Single session exercise stimulates formation of pre beta 1-HDL in leg muscle. (8/55)

Physical activity can raise the level of circulating HDL cholesterol. Pre beta 1-HDL is thought to be either the initial acceptor of cellular cholesterol or virtually the first particle in the pathway of the formation of HDL from apolipoprotein A-I and cellular lipids. We have therefore sought to identify pre beta 1-HDL in arterial and venous circulations of exercising legs in healthy individuals and in subjects with stable Type 2 diabetes mellitus. Blood samples were taken simultaneously from the femoral artery and vein before and after 25 min cycling exercise. The major findings were, first, that exercise significantly increased plasma concentration of pre beta 1-HDL (20% increase, P < 0.05) and second, that the pre beta 1-HDL concentration was significantly higher in the venous compared with the arterial blood both before and after exercise in both diabetics and controls. In the combined population, formation of pre beta 1-HDL at rest was 9.9 +/- 5.2 mg/min and exercise enhanced pre beta 1-HDL formation 6.6-fold in both groups.  (+info)