Bilateral pleuritis caused by Legionella micdadei. (1/160)

A 58-year-old woman was hospitalized because of progressive respiratory distress. She had a history of myasthenia gravis and invasive thymoma. After thymectomy, she had been administered oral prednisolone and intrathoracic anti-cancer drugs postoperatively. Her chest radiograph revealed bilateral pleural effusions. Legionella micdadei (L. micdadei) was isolated from the pleural effusions, and she was diagnosed as pleuritis caused by L. micdadei. She died despite intensive therapy with mechanical ventilation, drainage tube in the chest and intravenous erythromycin. Although only two cases of Legionellosis caused by L. micdadei have been reported in Japan, clinicians should be aware of L. micdadei as one of the candidates for infection in immunosuppressed hosts.  (+info)

Usefulness of fatty acid composition for differentiation of Legionella species. (2/160)

Numerical analysis of fatty acid methyl ester (FAME) profiles of 199 isolates and 76 reference strains, belonging to all validly described species of the genus Legionella that can be cultured in laboratory media, was used to differentiate between the species of this genus. With the exception of the strains that autofluoresced red, it was possible to differentiate all the other Legionella species. The strains of the species L. bozemanii, L. dumoffii, L. feeleii, L. gormanii, L. maceachernii, L. micdadei, and L. quinlivanii did not form single clusters, showing some degree of variability in the fatty acid compositions. The strains of the blue-white autofluorescent species had very similar fatty acid compositions and were difficult to distinguish from each other. Nine isolates had fatty acid profiles unlike those of any of the validly described species and may represent different FAME groups of known species or undescribed Legionella species. The method used in this study was useful for screening and discriminating large number of isolates of Legionella species. Moreover, the results obtained can be included in a database of fatty acid profiles, leading to a more accurate automatic identification of Legionella isolates.  (+info)

Detection of Legionella species in respiratory specimens using PCR with sequencing confirmation. (3/160)

Legionella spp. are a common cause of community-acquired respiratory tract infections and an occasional cause of nosocomial pneumonia. A PCR method for the detection of legionellae in respiratory samples was evaluated and was compared to culture. The procedure can be performed in 6 to 8 h with a commercially available DNA extraction kit (Qiagen, Valencia, Calif.) and by PCR with gel detection. PCR is performed with primers previously determined to amplify a 386-bp product within the 16S rRNA gene of Legionella pneumophila. We can specifically detect the clinically significant Legionella species including L. pneumophila, L. micdadei, L. longbeachae, L. bozemanii, L. feeleii, and L. dumoffii. The assay detects 10 fg (approximately two organisms) of legionella DNA in each PCR. Of 212 clinical specimens examined by culture, 100% of the culture-positive samples (31 of 31) were positive by this assay. By gel detection of amplification products, 12 of 181 culture-negative samples were positive for Legionella species by PCR, resulting in 93% specificity. Four of the 12 samples with discrepant results (culture negative, PCR positive) were confirmed to be positive for Legionella species by sequencing of the amplicons. The legionella-specific PCR assay that is described demonstrates high sensitivity and high specificity for routine detection of legionellae in respiratory samples.  (+info)

Search for agents causing atypical pneumonia in HIV-positive patients by inhibitor-controlled PCR assays. (4/160)

Pneumonia is one of the most frequent complications in acquired immunodeficiency syndrome-patients with Pneumocystis carinii as the leading cause. The true prevalence of atypical agents such as Chlamydia pneumoniae, C. trachomatis, Legionella pneumophila and Mycoplasma pneumoniae in this population of patients is unknown as the currently used method for diagnosing these agents is measurement of antibody levels. However, this method is of limited value in human immunodeficiency virus (HIV)-positive patients who may have a compromised antibody response. To evaluate the prevalence of Chlamydia spp., Legionella spp. and M. pneumoniae in HIV-infected patients with pulmonary disease, this retrospective study has applied inhibitor-controlled polymerase chain reaction analyses on 103 bronchoalveolar lavage (BAL) fluids representing 103 episodes of pneumonia in 83 HIV-positive patients. L. pneumophila was detected in 1% of the BAL fluids and M. pneumoniae was found as a coexisting pathogen in 2% of the samples. Chlamydia spp. could not be detected in any of the BAL fluids. By culture and staining methods 106 other microorganisms were detected with P. carinii and Streptococcus pneumoniae as the most frequently occurring. Pneumonia due to Chlamydia pneumoniae, Legionella pneumophila or Mycoplasma pneumoniae seems to be rare in Danish human immunodeficiency virus-infected patients, but might be considered as a possible cause in cases of treatment failure.  (+info)

Occurrence and distribution of Legionella species in composted plant materials. (5/160)

Legionellae were found in many samples of composted plant matter obtained from home gardeners and from facilities which undertook bulk composting. The predominant species isolated from these composts was Legionella pneumophila, the strains of which belonged to serogroups other than serogroup 1. Other Legionella species were present in many samples. Legionella longbeachae serogroup 1, which is implicated in human infections in South Australia, was present in samples obtained from two of six facilities composting large volumes of material and from 3 of 30 gardeners. Many of the species or strains isolated from composts have not been implicated as causative agents of legionellosis in South Austrailia, but some cause infection in healthy and immunosuppressed persons.  (+info)

Rapid identification of clinically relevant Legionella spp. by analysis of transfer DNA intergenic spacer length polymorphism. (6/160)

Analysis of PCR-amplified transfer DNA (tDNA) intergenic spacers was evaluated as a rapid method for identification to the species level of 18 species of Legionella known as human pathogens. Type strains (n = 19), reference strains (n = 16), environmental strains (n = 31), and clinical strains (n = 32) were tested. PCR products using outwardly directed tDNA consensus primers were separated on polyacrylamide gels and analyzed with automated laser fluorescence. Test results were obtained in 8 h starting with 72-h-old bacterial growth on solid medium. Species-specific patterns were obtained for all 18 Legionella species tested: Legionella anisa, L. bozemanii serogroups 1 and 2, L. cincinnatiensis, L. dumoffii, L. feeleii serogroups 1 and 2, L. gormanii, L. hackeliae serogroups 1 and 2, L. jordanis, L. lansingensis, L. longbeachae serogroups 1 and 2, L. lytica, L. maceachernii, L. micdadei, L. oakridgensis, L. parisiensis, L. pneumophila serogroups 1 to 14, L. sainthelensi serogroup 2, L. tucsonensis, and L. wadsworthii. Computer-assisted matching of tDNA-intergenic length polymorphism (ILP) patterns identified all 63 environmental and clinical strains to the species level and to serogroup for some strains. tDNA-ILP analysis is proposed as a routinely applicable method which allows rapid identification of environmental and clinical isolates of Legionella spp. associated with legionellosis.  (+info)

Isolation of Legionella anisa using an amoebic coculture procedure. (7/160)

Conventional diagnostic tests for legionellosis were negative for a 61-year-old immunocompromised man with pneumonia. However, coculture of a sputum sample with Acanthamoeba polyphaga amoebae led to the recovery of Legionella anisa. This procedure may be a sensitive and convenient diagnostic method, especially for non-Legionella pneumophila species infections that can be diagnosed only by culture.  (+info)

Emerging waterborne infections in health-care settings. (8/160)

Water is used in vast quantities in health-care premises. Many aquatic microorganisms can survive and flourish in water with minimal nutrients and can be transferred to vulnerable hospital patients in direct (e.g., inhalation, ingestion, surface absorption) and indirect ways (e.g., by instruments and utensils). Many outbreaks of infection or pseudoinfection occur through lack of prevention measures and ignorance of the source and transmission of opportunistic pathogens.  (+info)