Lymphocyte proliferation inhibitory factor (PIF) in alcoholic liver disease. (1/6088)

Lymphocyte proliferation inhibitory factor (PIF) was determined in the supernatants of PHA-stimulated lymphocytes from patients with alcoholic liver disease. PIF was assayed by determining inhibition of DNA synthesis in WI-38 human lung fibroblasts. A two-fold greater inhibition in thymidine incorporation into DNA by lung fibroblasts was observed in supernatants of PHA stimulated lymphocytes from patients with alcoholic hepatitis or active Laennec's cirrhosis as compared with that found in control subjects or patients with fatty liver. It is suggested that decreased liver cell regeneration seen in some patients with alcoholic hepatitis may be due to increased elaboration of PIF.  (+info)

Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cell-associated CD94/NKG2 receptors. (2/6088)

The crystal structure of the extracellular domain of CD94, a component of the CD94/NKG2 NK cell receptor, has been determined to 2.6 A resolution, revealing a unique variation of the C-type lectin fold. In this variation, the second alpha helix, corresponding to residues 102-112, is replaced by a loop, the putative carbohydrate-binding site is significantly altered, and the Ca2+-binding site appears nonfunctional. This structure may serve as a prototype for other NK cell receptors such as Ly-49, NKR-P1, and CD69. The CD94 dimer observed in the crystal has an extensive hydrophobic interface that stabilizes the loop conformation of residues 102-112. The formation of this dimer reveals a putative ligand-binding region for HLA-E and suggests how NKG2 interacts with CD94.  (+info)

Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. (3/6088)

Sensitivity to the pungent vanilloid, capsaicin, defines a subpopulation of primary sensory neurons that are mainly polymodal nociceptors. The recently cloned vanilloid receptor subtype 1 (VR1) is activated by capsaicin and noxious heat. Using combined in situ hybridization and histochemical methods, we have characterized in sensory ganglia the expression of VR1 mRNA. We show that this receptor is almost exclusively expressed by neurofilament-negative small- and medium-sized dorsal root ganglion cells. Within this population, VR1 mRNA is detected at widely varying levels in both the NGF receptor (trkA)-positive, peptide-producing cells that elicit neurogenic inflammation and the functionally less characterized glial cell line-derived neurotrophic factor-responsive cells that bind lectin Griffonia simplicifolia isolectin B4 (IB4). Cells without detectable levels of VR1 mRNA are found in both classes. A subpopulation of the IB4-binding cells that produce somatostatin has relatively low levels of VR1 mRNA. A previously uncharacterized population of very small cells that express the receptor tyrosine kinase (RET) and that do not label for trkA or IB4-binding has the highest relative levels of VR1 mRNA. The majority of small visceral sensory neurons of the nodose ganglion also express VR1 mRNA, in conjunction with the BDNF receptor trkB but not trkA. Axotomy results in the downregulation of VR1 mRNA in dorsal root ganglion cells. Our data emphasize the heterogeneity of VR1 mRNA expression by subclasses of small sensory neurons, and this may result in their differential sensitivity to chemical and noxious heat stimuli. Our results also indicate that peripherally derived trophic factors may regulate levels of VR1 mRNA.  (+info)

Control of metastasis by Asn-linked, beta1-6 branched oligosaccharides in mouse mammary cancer cells. (4/6088)

Studies in cell lines and malignant human tissues have shown that increased cell-surface Asn-linked beta1-6(GlcNAcbeta1-6Man) branching is associated with increased tumorigenic and metastatic properties. In this study, three mouse mammary cancer cell lines were transfected with an expression vector containing the mouse cDNA for N-acetylglucosaminyltransferase V (GlcNAcT-V EC 2.4.1.155), the glycosyltransferase responsible for initiating beta1-6 branching on Asn-linked carbohydrates. The cell lines were screened for increased cytotoxicity to L-PHA, a lectin specific for beta1-6 branching structures. Cell lines exhibiting increased L-PHA cytotoxicity expressed increased levels of beta1-6 branching structures. Northern blots detected the presence of GlcNAcT-V transcribed from the expression vector in the L-PHA sensitive cell lines. After injection into the tail veins of mice, transfected cell lines with increased beta1-6 branching on the cell surface formed elevated levels of lung tumors relative to control transfected cell lines (P < 0.002). Western blots of membrane proteins from GlcNAcT-V transfected and control cells probed with the lectins DSA and WGA did not show an increase in polyN-acetyllactosamine and sialic acid content in the transfected cell lines. These results demonstrate that a specific increase in beta1-6 branching due to an elevation in GlcNAcT-V expression increases metastatic potential.  (+info)

Lectin receptor sites on rat liver cell nuclear membranes. (5/6088)

The presence and localization of lectin receptor sites on rat liver cell nuclear and other endomembranes was studied by light and electron microscopy using fluorescein and ferritin-coupled lectin conjugates. Isolated nuclei labelled with fluorescein-conjugated Concanavalin A (Con A) or wheat germ agglutinin (WGA) often showed membrane staining, which sometimes was especially bright on small stretches of the nuclear surface. Unlabelled nuclei and nuclei with a complete ring fluorescence were also seen. The nuclear fluorescence corresponded in intensity to that seen on the surface of isolated rat liver cells. Con A-ferritin particles were seldom detected on the cytoplasmic surface of the intact nuclear envelope. However, at places where the 2 leaflets of the envelope were widely separated or where the outer nuclear membrane was partly torn away, heavy labelling was seen on the cisternal surface of both the inner and outer nuclear membranes. Labelling with Con A-ferritin was also found on the cisternal side of rough endoplasmic reticulum present in the specimens. No labelling was seen on the cytoplasmic surface of mitochondrial outer membrane. The results demonstrate the presence of binding sites for Con A and WGA in nuclei and an asymmetric localization of these sites on the cisternal side of ribosome-carrying endomembranes in rat liver cells.  (+info)

Developmental changes in mucosubstances revealed by immunostaining with antimucus monoclonal antibodies and lectin staining in the epithelium lining the segment from gizzard to duodenum of the chick embryo. (6/6088)

The mucosubstances in the epithelium lining the segment from gizzard to duodenum during development of the chick embryo was studied histochemically using monoclonal antibodies against gizzard mucus and lectins, with attention to the regional differentiation of the epithelium in this segment. The anterior limit of epithelial CdxA mRNA expression detected by in situ hybridisation, which served as the position of the gizzard-duodenal boundary, was clearly found from d 3. Granules positive for some antibodies or lectins were found in the region ranging from the posterior part of the gizzard to the duodenum at d 3, which was followed by an increase in the number of granules and a gradual enlargement of the granule-positive area to the anterior part of the gizzard over 4-6 d. From d 4, the epithelia of the gizzard body and of the pyloric or duodenal region came to be differently stained with some antibodies or lectins. From d 10, each region showed a specific pattern of staining. The epithelia of the gizzard body and pyloric region contained abundant mucus granules with a different staining pattern. In the duodenum the number of stained granules was low except in occasional goblet cells. Thus the epithelia of the gizzard body, pyloric region and duodenum may produce different mucosubstances and the regional differentiation in these epithelia may start at rather early stages soon after the formation of digestive tube.  (+info)

Effect of sodium butyrate on lymphocyte activation. (7/6088)

Butyrate, in relatively low concentrations, has been shown to induce synthesis of enzymes, cause changes in cell morphology, and inhibit growth of a variety of mammalian cells in tissue culture (reviewed in [1]). In this communication, we report our observations on the effect of butyrate on lymphocyte activation. Butyrate completely and reversibly inhibits mitogen-induced blast formation. We present evidence that it does not interfere with the binding of mitogens, that it does not inhibit a number of the "early" reactions involved in activation, and that it does not affect ongoing DNA synthesis for an extended period of time. However, butyrate rapidly inhibits any increase in the rate of DNA synthesis.  (+info)

In vivo NGF deprivation reduces SNS expression and TTX-R sodium currents in IB4-negative DRG neurons. (8/6088)

Recent evidence suggests that changes in sodium channel expression and localization may be involved in some pathological pain syndromes. SNS, a tetrodotoxin-resistant (TTX-R) sodium channel, is preferentially expressed in small dorsal root ganglion (DRG) neurons, many of which are nociceptive. TTX-R sodium currents and SNS mRNA expression have been shown to be modulated by nerve growth factor (NGF) in vitro and in vivo. To determine whether SNS expression and TTX-R currents in DRG neurons are affected by reduced levels of systemic NGF, we immunized adult rats with NGF, which causes thermal hypoalgesia in rats with high antibody titers to NGF. DRG neurons cultured from rats with high antibody titers to NGF, which do not bind the isolectin IB4 (IB4(-)) but do express TrkA, were studied with whole cell patch-clamp and in situ hybridization. Mean TTX-R sodium current density was decreased from 504 +/- 77 pA/pF to 307 +/- 61 pA/pF in control versus NGF-deprived neurons, respectively. In comparison, the mean TTX-sensitive sodium current density was not significantly different between control and NGF-deprived neurons. Quantification of SNS mRNA hybridization signal showed a significant decrease in the signal in NGF-deprived neurons compared with the control neurons. The data suggest that NGF has a major role in the maintenance of steady-state levels of TTX-R sodium currents and SNS mRNA in IB4(-) DRG neurons in adult rats in vivo.  (+info)