Transdermal delivery of an anti-cancer drug via w/o emulsions based on alkyl polyglycosides and lecithin: design, characterization, and in vivo evaluation of the possible irritation potential in rats. (49/90)

 (+info)

Remodelling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments. (50/90)

 (+info)

Effect of cholesterol on distribution of stable, hydrophobic perchlorotriphenylmethyl triethylester radical incorporated in lecithin liposomal membranes. (51/90)

Perchlorotriphenylmethyl triethylester radical (PTM-TE) is a hydrophobic, stable radical giving a narrow singlet ESR signal with a small satellite signal for (13)C in organic solvents. In order to use PTM-TE as a label of liposomal membranes, its manner of incorporation into liposomal membranes was studied. Two components, broad and narrow signals, were observed on the ESR spectrum of PTM-TE incorporated into liposomal membranes composed of egg yolk phosphatidylcholine (egg-PC). The broad signal was increased by the presence of cholesterol in the membranes. The spectral anisotropy of the broad signal was very small as analyzed with oriented planar multilamellar membranes. The narrow signal increased with an increase in temperature in the absence of cholesterol, whereas only a small increase in the signal was observed in the presence of cholesterol. The g-value and line width of the narrow signal were very close to those of PTM-TE in mineral oil, whose viscosity is close to the microviscosity in the hydrophobic region of egg-PC membranes. On the other hand, the g-value and line width of the broad signal were close to those of solid PTM-TE. These observations indicate that the broad signal observed in liposomes originates from PTM-TE clusters in the membranes. The clusters were dissolved in egg-PC membranes at a PTM-TE/egg-PC molar ratio of less than 0.017. However, the clusters were hardly dissolved in the presence of cholesterol.  (+info)

Adsorption of lecithin liposomes to acid clay. (52/90)

The interaction between lecithin liposomes and acid clay was investigated to clarify the mechanism for liposome adsorption to the clay. It was found that the multilamellar vesicular structure of the liposomes was broken as a result of primary adsorption. The acid clay particles aggregated and were eventually covered by the lecithin layer structure. In the case of kaolin, on the other hand, the liposomes were weakly adsorbed to the clay and maintained the vesicular structure. The amount of primary adsorption to the clay surface, which was estimated from the adsorption isotherm, was more for acid clay than for kaolin, and the total amount adsorbed to the acid clay was also more than to kaolin. This result can be explained by the much higher density of the negative charge on the acid clay surface than that for kaolin. The liposomes are therefore considered to be adsorbed to the acid clay mainly by the choline positive charge residing at the end of the lecithin molecule, although this is of no net charge as a whole.  (+info)

Therapeutic effect of lecithinized superoxide dismutase on pulmonary emphysema. (53/90)

 (+info)

Short- and long-term stability of lyophilised melatonin-loaded lecithin/chitosan nanoparticles. (54/90)

The aim of this study was to establish a freeze-drying process for melatonin-loaded lecithin/chitosan nanoparticles (NPs) to preserve their chemical and physical stability for a longer time period that what is possible in an aqueous suspension. Glucose and trehalose were investigated as potential excipients during freeze-drying of NP suspensions. Lecithin/chitosan NPs were characterised by mean diameter and zeta potential, ranging between 117.4 and 328.5 nm and 6.7 and 30.2 mV, respectively, depending on the lecithin type and chitosan content in the preparation. Melatonin loadings were up to 7.1%. For all lecithin/chitosan NPs, no notable differences in the mean particle size, size distribution, zeta potential or melatonin content were observed before or immediately after the lyophilisation process or after 7 months of storage at 4 degrees C. The residual moisture contents of lyophilisates with glucose and trehalose immediately after the lyophilisation process varied between 4.0-4.8% and 2.4-3.0%, respectively. All lecithin/chitosan NPs had a fully amorphous nature after the freeze-drying process, as indicated by modulated differential scanning calorimetry. NP lyophilisates with glucose had a low glass transition temperature (ca. 5 degrees C), confirming that lyophilisation with glucose as a cryoprotectant was not appropriate. All lyophilisates with trehalose had a glass transition temperature above the room temperature, allowing formation of the cake without a collapse of the structure, which was capable of preserving its characteristics and appearance following 7 months of storage at 4 degrees C.  (+info)

Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. (55/90)

 (+info)

Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization. (56/90)

 (+info)