Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. (1/32)

Isovaleric acidemia (IVA) is a recessive disorder caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD). We have reported elsewhere nine point mutations in the IVD gene in fibroblasts of patients with IVA, which lead to abnormalities in IVD protein processing and activity. In this report, we describe eight IVD gene mutations identified in seven IVA patients that result in abnormal splicing of IVD RNA. Four mutations in the coding region lead to aberrantly spliced mRNA species in patient fibroblasts. Three of these are amino acid altering point mutations, whereas one is a single-base insertion that leads to a shift in the reading frame of the mRNA. Two of the coding mutations strengthen pre-existing cryptic splice acceptors adjacent to the natural splice junctions and apparently interfere with exon recognition, resulting in exon skipping. This mechanism for missplicing has not been reported elsewhere. Four other mutations alter either the conserved gt or ag dinucleotide splice sites in the IVD gene. Exon skipping and cryptic splicing were confirmed by transfection of these mutations into a Cos-7 cell line model splicing system. Several of the mutations were predicted by individual information analysis to inactivate or significantly weaken adjacent donor or acceptor sites. The high frequency of splicing mutations identified in these patients is unusual, as is the finding of missplicing associated with missense mutations in exons. These results may lead to a better understanding of the phenotypic complexity of IVA, as well as provide insight into those factors important in defining intron/exon boundaries in vivo.  (+info)

Mitochondrial import and processing of wild type and type III mutant isovaleryl-CoA dehydrogenase. (2/32)

Isovaleric acidemia is a rare inborn error of metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD), a nucleus-encoded, homotetrameric, mitochondrial flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA. We have previously identified a nucleotide deletion in the gene for IVD in fibroblasts from a patient with isovaleric acidemia leading to a shift in reading frame and premature termination of translation. The mutant IVD precursor is imported and processed to mature size, but no active enzyme is detected in mutant fibroblasts or expressed in Escherichia coli. Examination of the crystal structure of human IVD reveals that the C terminus is involved in tetramer stability. In vitro mitochondrial import experiments show that wild type IVD protein rapidly and stably forms mature homotetramer following import, whereas Type III mutant protein never forms stable oligomers. An additional series of mutant proteins with truncations and/or alterations in the C-terminal sequence implicates the C terminus of IVD in both enzyme activity and tetramer stability. Importantly, a dimeric intermediate in the folding pathway for wild type IVD has been identified in the in vitro mitochondrial import experiments, the first report of such an intermediate in the biogenesis of an acyl-CoA dehydrogenase.  (+info)

Cloning of a gene for an acyl-CoA dehydrogenase from Pisum sativum L. and purification and characterization of its product as an isovaleryl-CoA dehydrogenase. (3/32)

Isovaleryl-CoA dehydrogenase (IVD, EC ) catalyzes the third step in the catabolism of leucine in mammals. Deficiency of this enzyme leads to the clinical disorder isovaleric acidemia. IVD has been purified and characterized from human and rat liver, and the x-ray crystallographic structure of purified recombinant human IVD has been reported. Nothing is known about IVD activity in plants, although cDNA clones from Arabidopsis thaliana and partial sequences from Gossypium hirsutum and Oryza sativa have been identified as putative IVDs based on sequence homology and immuno cross-reactivity. In this report we describe the identification and characterization of an IVD from pea, purification of the enzyme using a novel and rapid auxin affinity chromatography matrix, and cloning of the corresponding gene. At the amino acid level, pea IVD is 60% similar to human and rat IVD. The specific activity and abundance of plant IVD was found to be significantly lower than for its human counterpart and exhibits developmental regulation. Substrate specificity of the plant enzyme is similar to the human IVD, and it cross-reacts to anti-human IVD antibodies. Molecular modeling of the pea enzyme based on the structure of human IVD indicates a high degree of structural similarity among these enzymes. Glu-244, shown to function as the catalytic base in human IVD along with most of the amino acids that make up the acyl CoA binding pocket, is conserved in pea IVD. The genomic structure of the plant IVD gene consists of 13 exons and 12 introns, spanning approximately 4 kilobases, and the predicted RNA splicing sites exhibit the extended consensus sequence described for other plant genes.  (+info)

Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. (4/32)

Between the different types of Acyl-CoA dehydrogenases (ACADs), those specific for branched chain acyl-CoA derivatives are involved in the catabolism of amino acids. In mammals, isovaleryl-CoA dehydrogenase (IVD), an enzyme of the leucine catabolic pathway, is a mitochondrial protein, as other acyl-CoA dehydrogenases involved in fatty acid beta-oxidation. In plants, fatty acid beta-oxidation takes place mainly in peroxisomes, and the cellular location of the enzymes involved in the catabolism of branched-chain amino acids had not been definitely assigned. Here, we describe that highly purified potato mitochondria have important IVD activity. The enzyme was partially purified and cDNAs from two different genes were obtained. The partially purified enzyme has enzymatic constant values with respect to isovaleryl-CoA comparable to those of the mammalian enzyme. It is not active towards straight-chain acyl-CoA substrates tested, but significant activity was also found with isobutyryl-CoA, implying an additional role of the enzyme in the catabolism of valine. The present study confirms recent reports that in plants IVD activity resides in mitochondria and opens the way to a more detailed study of amino-acid catabolism in plant development.  (+info)

The mitochondrial isovaleryl-coenzyme a dehydrogenase of arabidopsis oxidizes intermediates of leucine and valine catabolism. (5/32)

We recently identified a cDNA encoding a putative isovaleryl-coenzyme A (CoA) dehydrogenase in Arabidopsis (AtIVD). In animals, this homotetrameric enzyme is located in mitochondria and catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA as an intermediate step in the leucine (Leu) catabolic pathway. Expression of AtIVD:smGFP4 fusion proteins in tobacco (Nicotiana tabacum) protoplasts and biochemical studies now demonstrate the in vivo import of the plant isovaleryl-CoA dehydrogenase (IVD) into mitochondria and the enzyme in the matrix of these organelles. Two-dimensional separation of mitochondrial proteins by blue native and SDS-PAGE and size determination of the native and overexpressed proteins suggest homodimers to be the dominant form of the plant IVD. Northern-blot hybridization and studies in transgenic Arabidopsis plants expressing Ativd promoter:gus constructs reveal strong expression of this gene in seedlings and young plants grown in the absence of sucrose, whereas promoter activity in almost all tissues is strongly inhibited by exogeneously added sucrose. Substrate specificity tests with AtIVD expressed in Escherichia coli indicate a strong preference toward isovaleryl-CoA but surprisingly also show considerable activity with isobutyryl-CoA. This strongly indicates a commitment of the enzyme in Leu catabolism, but the activity observed with isobutyryl-CoA also suggests a parallel involvement of the enzyme in the dehydrogenation of intermediates of the valine degradation pathway. Such a dual activity has not been observed with the animal IVD and may suggest a novel connection of the Leu and valine catabolism in plants.  (+info)

The variant human isovaleryl-CoA dehydrogenase gene responsible for type II isovaleric acidemia determines an RNA splicing error, leading to the deletion of the entire second coding exon and the production of a truncated precursor protein that interacts poorly with mitochondrial import receptors. (6/32)

Isovaleryl-CoA dehydrogenase (IVD) is a mitochondrial enzyme involved in leucine metabolism. Previous studies of fibroblasts from patients with isovaleric acidemia (IVA), an inherited defect in IVD, have revealed that IVD precursor protein produced by type II IVA cells is 3 kDa smaller than normal and is processed inefficiently to a mature form which is also 3 kDa smaller than normal. Using the polymerase chain reaction, we have identified a 90-base pair deletion encompassing bases 145-234 in type II IVD cDNA. This deletion is caused by an error in RNA splicing and predicts the in-frame deletion of 30 amino acids beginning with leucine 20 of the mature IVD. The rate of leader peptide cleavage by purified mitochondrial leader peptidases was similar for the variant and normal precursor IVDs expressed in vitro, and radiosequencing confirmed that both mature proteins contain identical amino termini. In vitro import studies showed that the efficiency of overall mitochondrial import of type II variant IVD precursor was approximately 30% of normal, as was its binding to the mitochondrial surface. Unlike its normal counterpart, the bound variant IVD precursor was readily released. These data suggest that binding of the variant protein to mitochondrial membrane receptors per se is hindered, resulting in the inefficient mitochondrial processing.  (+info)

Structures of isobutyryl-CoA dehydrogenase and enzyme-product complex: comparison with isovaleryl- and short-chain acyl-CoA dehydrogenases. (7/32)

The acyl-CoA dehydrogenases are a family of mitochondrial flavoproteins involved in the catabolism of fatty and amino acids. Isobutyryl-CoA dehydrogenase (IBD) is involved in the catabolism of valine and catalyzes the conversion of isobutyryl-CoA to methacrylyl-CoA. The crystal structure of IBD with and without substrate has been determined to 1.76-A resolution. The asymmetric unit contains a homotetramer with substrate/product bound in two monomers. The overall structure of IBD is similar to those of previously determined acyl-CoA dehydrogenases and consists of an NH2-terminal alpha-helical domain, a medial beta-strand domain and a C-terminal alpha-helical domain. The enzyme-bound ligand has been modeled in as the reaction product, methacrylyl-CoA. The location of Glu-376 with respect to the C-2-C-3 of the bound product and FAD confirms Glu-376 to be the catalytic base. IBD has a shorter and wider substrate-binding cavity relative to short-chain acyl-CoA dehydrogenase, permitting the optimal binding of the isobutyryl-CoA substrate. The dramatic lateral expansion of the binding cavity seen in isovaleryl-CoA dehydrogenase is not observed in IBD. The conserved tyrosine or phenylalanine that defines a side of the binding cavity in other acyl-CoA dehydrogenases is replaced by a leucine (Leu-375) in the current structure. Substrate binding changes the position of some residues lining the binding pocket as well as the position of the loop containing the catalytic glutamate and subsequent helix. Three clinical mutations have been modeled to the structure. The mutations do not affect substrate binding but instead appear to disrupt protein folding and/or stability.  (+info)

FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation. (8/32)

The most prominent biochemical consequence of riboflavin deficiency in rats is a drastic decrease in various acyl-CoA dehydrogenase activities, especially that of short chain and isovaleryl-CoA dehydrogenase (IVD). As a result, oxidation of fatty acids and leucine is severely inhibited. We studied the effects of FAD at various stages of acyl-CoA dehydrogenase biogenesis. Immunoblot revealed severe losses of various acyl-CoA dehydrogenases and electron transfer flavoprotein in riboflavin-deficient rat liver mitochondria. The decreases in IVD and short chain acyl-CoA dehydrogenase were particularly severe, reaching values of 17 and 34% of controls, respectively. With the exception of IVD, the rate of in vitro transcription of the respective genes and the amounts of mRNAs of these flavoproteins in tissues increased 3-8.5-fold over controls. The amount of IVD mRNA and its transcription rate remained unchanged, suggesting that IVD expression is regulated separately from other acyl-CoA dehydrogenases. When riboflavin was depleted, in vitro translation of acyl-CoA dehydrogenase and electron transfer flavoprotein alpha-subunit mRNAs was moderately inhibited. Translation of non-flavoproteins was also inhibited. The stability of precursor acyl-CoA dehydrogenases and their mitochondrial import/processing were unaffected. However, mature acyl-CoA dehydrogenases degraded markedly faster in deficient mitochondria than in controls. Regardless of whether precursors were translated under riboflavin-depleted or riboflavin replete conditions, mature acyl-CoA dehydrogenases survived well when imported into normal mitochondria but degraded faster when imported into deficient mitochondria. These findings indicate that FAD ligand binds to mature acyl-CoA dehydrogenase inside the mitochondria.  (+info)