The development and evolution of the pharyngeal arches. (73/1054)

A muscularised pharynx, with skeletal support, serving the dual functions of feeding and respiration, is a fundamental vertebrate characteristic. Embryologically, the pharyngeal apparatus has its origin in a series of bulges that form on the lateral surface of the embryonic head, the pharyngeal arches, whose development is complex. These structures are composed of a number of disparate embryonic cell types: ectoderm, endoderm, neural crest and mesoderm, whose development must be coordinated to generate the functional adult apparatus. In the past, most studies have emphasised the role played by the neural crest, which generates the skeletal elements of the arches, in directing pharyngeal arch development, but it has also become apparent that the endoderm plays a prominent role in directing arch development. Neural crest cells are not required for arch formation, their regionalisation nor to some extent their sense of identity. Furthermore, the endoderm is the major site of expression of a number of important signalling molecules, and this tissue has been shown to be responsible for promoting the formation of particular components of the arches. Thus vertebrate pharyngeal morphogenesis can now be seen to be a more complex process than was previously believed, and must result from an integration of both neural crest and endodermal patterning mechanisms. Interestingly, this also mirrors the fact that the evolutionary origin of pharyngeal segmentation predates that of the neural crest, which is an exclusively vertebrate characteristic. As such, the evolution of the vertebrate pharynx is also likely to have resulted from an integration between these 2 patterning systems. Alterations in the interplay between neural crest and endodermal patterning are also likely to be responsible for the evolutionary that occurred to the pharyngeal region during subsequent vertebrate evolution.  (+info)

Invertebrate connectin spans as much as 3.5 microm in the giant sarcomeres of crayfish claw muscle. (74/1054)

In crayfish claw closer muscle, the giant sarcomeres are 8.3 microm long at rest, four times longer than vertebrate striated muscle sarcomeres, and they are extensible up to 13 microm upon stretch. Invertebrate connectin (I-connectin) is an elastic protein which holds the A band at the center of the sarcomere. The entire sequence of crayfish I-connectin was predicted from cDNA sequences of 53 424 bp (17 352 residues; 1960 kDa). Crayfish I-connectin contains two novel 68- and 71-residue repeats, and also two PEVK domains and one kettin region. Kettin is a small isoform of I-connectin. Immunoblot tests using antibody to the 68-residue repeats revealed the presence of I-connectin also in long sarcomeres of insect leg muscle and barnacle ventral muscle. Immunofluorescence microscopy demonstrated that the two repeats, the long spacer and the two PEVK domains contribute to sarcomere extension. These regions rich in charged amino acids, occupying 63% of the crayfish I-connectin molecule, may allow a span of a 3.5 microm distance as a new class of composite spring.  (+info)

If phosphatidylserine is the death knell, a new phosphatidylserine-specific receptor is the bellringer. (75/1054)

Recognition of phosphatidylserine (PtdSer) is essential for engulfment of apoptotic cells by mammalian phagocytes. Engagement of a new phosphatidylserine-specific receptor (PtdSerR) appears to be necessary for uptake of apoptotic cells. Many other mammalian receptors have been described to function in the clearance of apoptotic cells. The emerging picture is that many of these receptors may provide the strong adhesion needed to increase the likelihood of contact between the PtdSerR and its phospholipid ligand, which is required for uptake. Furthermore, stimulation of this receptor on different types of phagocytes by apoptotic cells, PtdSer-containing liposomes or an IgM monoclonal anti-PtdSer antibody initiates release of TGFbeta, known to be involved in the anti-inflammatory effects of apoptotic cells. Although highly homologous genes exist in C. elegans and Drosophila melanogaster, their role in engulfment of apoptotic cells remains to be determined.  (+info)

Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. (76/1054)

Over the last 15 years a striking pattern of diversification has been documented in the fossil record of benthic marine invertebrates. Higher taxa (orders) tend to originate onshore, diversify offshore, and retreat into deep-water environments. Previous studies attribute this macroevolutionary pattern to a variety of causes, foremost among them the role of nearshore disturbance in providing opportunities for the evolution of novel forms accorded ordinal rank. Our analysis of the post-Paleozoic record of ordinal first appearances indicates that the onshore preference of ordinal origination occurred only in the Mesozoic prior to the Turonian stage of the Cretaceous, a period characterized by relatively frequent anoxic/dysoxic bottom conditions in deeper marine environments. Later, in the Cretaceous and Cenozoic, ordinal origination of benthic organisms did not occur exclusively, or even preferentially, in onshore environments. This change in environmental pattern of ordinal origination roughly correlates with Late Cretaceous: (i) decline in anoxia/dysoxia in offshore benthic environments; (ii) extinction of faunas associated with dysoxic conditions; (iii) increase in bioturbation with the expansion of deep burrowing forms into offshore environments; and (iv) offshore expansion of bryozoan diversity. We also advance a separate argument that the Cenomanian/Turonian and latest Paleocene global events eliminated much of the deep-water benthos. This requires a more recent origin of modern vent and deep-sea faunas, from shallower water refugia, than the Paleozoic or early Mesozoic origin of these faunas suggested by other workers.  (+info)

Biogeography and ecological setting of Indian Ocean hydrothermal vents. (77/1054)

Within the endemic invertebrate faunas of hydrothermal vents, five biogeographic provinces are recognized. Invertebrates at two Indian Ocean vent fields (Kairei and Edmond) belong to a sixth province, despite ecological settings and invertebrate-bacterial symbioses similar to those of both western Pacific and Atlantic vents. Most organisms found at these Indian Ocean vent fields have evolutionary affinities with western Pacific vent faunas, but a shrimp that ecologically dominates Indian Ocean vents closely resembles its Mid-Atlantic counterpart. These findings contribute to a global assessment of the biogeography of chemosynthetic faunas and indicate that the Indian Ocean vent community follows asymmetric assembly rules biased toward Pacific evolutionary alliances.  (+info)

Finding the tree of life: matching phylogenetic trees to the fossil record through the 20th century. (78/1054)

Phylogenies, or evolutionary trees, are fundamental to biology. Systematists have laboured since the time of Darwin to discover the tree of life. Recent developments in systematics, such as cladistics and molecular sequencing, have led practitioners to believe that their phylogenies are more testable now than equivalent efforts from the 1960s or earlier. Whole trees, and nodes within trees, may be assessed for their robustness. However, these quantitative approaches cannot be used to demonstrate that one tree is more likely to be correct than another. Congruence assessments may help. Comparison of a sample of 1000 published trees with an essentially independent standard (dates of origin of groups in geological time) shows that the order of branching has improved slightly, but the disparity between estimated times of origination from phylogeny and stratigraphy has, if anything, become worse. Controlled comparisons of phylogenies of four major groups (Agnatha, Sarcopterygii, Sauria and Mammalia) do not show uniform improvement, or decline, of fit to stratigraphy through the twentieth century. Nor do morphological or molecular trees differ uniformly in their performance.  (+info)

Sexual selection at the protein level drives the extraordinary divergence of sex-related genes during sympatric speciation. (79/1054)

An increasing number of molecular studies are indicating that, in a wide variety of species, genes directly related to fertilization evolve at extraordinarily high rates. We try to gain insight into the dynamics of this rapid evolution and its underlying mechanisms by means of a simple theoretical model. In the model, sexual selection and sympatric speciation act together in order to drive rapid divergence of gamete recognition proteins. In this process, intraspecific competition for fertilizations enlarges male gamete protein variation by means of evolutionary branching, which initiates sympatric speciation. In addition, avoidance of competition for fertilizations between the incipient species drives the rapid evolution of gamete recognition proteins. This mechanism can account for both strong stabilizing selection on gamete recognition proteins within species and rapid divergence between species. Moreover, it can explain the empirical finding that the rate of divergence of fertilization genes is not constant, but highest between closely related species.  (+info)

Pfiesteria: review of the science and identification of research gaps. Report for the National Center for Environmental Health, Centers for Disease Control and Prevention. (80/1054)

In connection with the CDC National Conference on Pfiesteria, a multidisciplinary panel evaluated Pfiesteria-related research. The panel set out what was known and what was not known about adverse effects of the organism on estuarine ecology, fish, and human health; assessed the methods used in Pfiesteria research; and offered suggestions to address data gaps. The panel's expertise covered dinoflagellate ecology; fish pathology and toxicology; laboratory measurement of toxins, epidemiology, and neurology. The panel evaluated peer-reviewed and non-peer-reviewed literature available through June 2000 in a systematic conceptual framework that moved from the source of exposure, through exposure research and dose, to human health effects. Substantial uncertainties remain throughout the conceptual framework the panel used to guide its evaluation. Firm evidence demonstrates that Pfiesteria is toxic to fish, but the specific toxin has not been isolated or characterized. Laboratory and field evidence indicate that the organism has a complex life cycle. The consequences of human exposure to Pfiesteria toxin and the magnitude of the human health problem remain obscure. The patchwork of approaches used in clinical evaluation and surrogate measures of exposure to the toxin are major limitations of this work. To protect public health, the panel suggests that priority be given research that will provide better insight into the effects of Pfiesteria on human health. Key gaps include the identity and mechanism of action of the toxin(s), the incomplete description of effects of exposure in invertebrates, fish, and humans, and the nature and extent of exposures that place people at risk.  (+info)