Respiratory syncytial virus-induced acute and chronic airway disease is independent of genetic background: an experimental murine model. (1/5992)

BACKGROUND: Respiratory syncytial virus (RSV) is the leading respiratory viral pathogen in young children worldwide. RSV disease is associated with acute airway obstruction (AO), long-term airway hyperresponsiveness (AHR), and chronic lung inflammation. Using two different mouse strains, this study was designed to determine whether RSV disease patterns are host-dependent. C57BL/6 and BALB/c mice were inoculated with RSV and followed for 77 days. RSV loads were measured by plaque assay and polymerase chain reaction (PCR) in bronchoalveolar lavage (BAL) and whole lung samples; cytokines were measured in BAL samples. Lung inflammation was evaluated with a histopathologic score (HPS), and AO and AHR were determined by plethysmography. RESULTS: Viral load dynamics, histopathologic score (HPS), cytokine concentrations, AO and long-term AHR were similar in both strains of RSV-infected mice, although RSV-infected C57BL/6 mice developed significantly greater AO compared with RSV-infected BALB/c mice on day 5. PCR detected RSV RNA in BAL samples of RSV infected mice until day 42, and in whole lung samples through day 77. BAL concentrations of cytokines TNF-alpha, IFN-gamma, and chemokines MIG, RANTES and MIP-1alpha were significantly elevated in both strains of RSV-infected mice compared with their respective controls. Viral load measured by PCR significantly correlated with disease severity on days 14 and 21. CONCLUSION: RSV-induced acute and chronic airway disease is independent of genetic background.  (+info)

Genetic variation in response to an indirect ecological effect. (2/5992)

Indirect ecological effects (IEEs) are widespread and often as strong as the phenotypic effects arising from direct interactions in natural communities. Indirect effects can influence competitive interactions, and are thought to be important selective forces. However, the extent that selection arising from IEEs results in long-term evolutionary change depends on genetic variation underlying the phenotypic response-that is, a genotype-by-IEE interaction. We provide the first data on genetic variation in the response of traits to an IEE, and illustrate how such genetic variation might be detected and analysed. We used a model tri-trophic system to investigate the effect of host plants on two populations of predatory ladybirds through a clonal aphid herbivore. A split-family experimental design allowed us to estimate the effects of aphid host plant on ladybird traits (IEE) and the extent of genetic variation in ladybird predators for response to these effects (genotype-by-indirect environmental effect interaction). We found significant genetic variation in the response of ladybird phenotypes to the indirect effect of host plant of their aphid prey, demonstrating the potential for evolutionary responses to selection arising from the prey host.  (+info)

Poor maternal environment enhances offspring disease resistance in an invertebrate. (3/5992)

Natural populations vary tremendously in their susceptibility to infectious disease agents. The factors (environmental or genetic) that underlie this variation determine the impact of disease on host population dynamics and evolution, and affect our capacity to contain disease outbreaks and to enhance resistance in agricultural animals and disease vectors. Here, we show that changes in the environmental conditions under which female Daphnia magna are kept can more than halve the susceptibility of their offspring to bacterial infection. Counter-intuitively, and unlike the effects typically observed in vertebrates for transfer of immunity, mothers producing offspring under poor conditions produced more resistant offspring than did mothers producing offspring in favourable conditions. This effect occurred when mothers who were well provisioned during their own development then found themselves reproducing in poor conditions. These effects likely reflect adaptive optimal resource allocation where better quality offspring are produced in poor environments to enhance survival. Maternal exposure to parasites also reduced offspring susceptibility, depending on host genotype and offspring food levels. These maternal responses to environmental conditions mean that studies focused on a single generation, and those in which environmental variation is experimentally minimized, may fail to describe the crucial parameters that influence the spread of disease. The large maternal effects we report here will, if they are widespread in nature, affect disease dynamics, the level of genetic polymorphism in populations, and likely weaken the evolutionary response to parasite-mediated selection.  (+info)

Cytokine responses of bovine macrophages to diverse clinical Mycobacterium avium subspecies paratuberculosis strains. (4/5992)

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease (JD) persistently infects and survives within the host macrophages. While it is established that substantial genotypic variation exists among MAP, evidence for the correlates that associate specific MAP genotypes with clinical or sub-clinical disease phenotypes is presently unknown. Thus we studied strain differences in intracellular MAP survival and host responses in a bovine monocyte derived macrophage (MDM) system. RESULTS: Intracellular survival studies showed that a bovine MAP isolate (B1018) and a human MAP isolate (Hu6) persisted in relatively higher numbers when compared with a sheep MAP isolate (S7565) at 24-hr, 48-hr and 96-hr post infection (PI). MDMs stimulated with B1018 up-regulated IL-10 at the transcript level and down-regulated TNFalpha at the protein and transcript levels compared with stimulations by the S7565 and Hu6. MDMs infected with Hu6 showed a down regulatory pattern of IL-10 and TNFalpha compared to stimulations by S7565. Cells stimulated with B1018 and Hu6 had low levels of matrix metalloprotease-3 (MMP3) and high levels of tissue inhibitor of metalloprotease-1 (TIMP1) at 96-hr PI relative to MDMs stimulated by S7565. CONCLUSION: Taken together, results suggest that the bovine (B1018) and the human (Hu6) MAP isolates lead to anti-inflammatory and anti-invasive pathways in the macrophage environment whereas the sheep (S7565) MAP isolate induces a pro-inflammatory pathway. Thus the infecting strain genotype may play a role in polarizing the host immune responses and dictate the clinicopathological outcomes in this economically important disease.  (+info)

Compositional discordance between prokaryotic plasmids and host chromosomes. (5/5992)

BACKGROUND: Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucleotide composition of plasmids is similar to that of the genome of their hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity between plasmid and host genome. We compared the dinucleotide composition of a large collection of plasmids with that of their host genomes to shed more light on this enigma. RESULTS: The dinucleotide frequency, coined the genome signature, facilitates the identification of putative horizontally transferred DNA in complete genome sequences, since it was found to be typical for a certain genome, and similar between related species. By comparison of the genome signature of 230 plasmid sequences with that of the genome of each respective host, we found that in general the genome signature of plasmids is dissimilar from that of their host genome. CONCLUSION: Our results show that the genome signature of plasmids does not resemble that of their host genome. This indicates either absence of amelioration or a less stable relationship between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving the genome signature discordance between these episomes and host chromosomes.  (+info)

Protein synthesized by dengue infected Aedes aegypti and Aedes albopictus. (6/5992)

The main objective of this study was to compare protein profiles of whole mosquitoes of Malaysian Aedes aegypti and Aedes albopictus after infection with virus and to investigate whether dengue virus would induce protein secretion in Ae. aegypti and Ae. albopictus. Using SDS -PAGE, it was shown that in uninfected Ae. aegypti and Ae. albopictus, the protein bands were within the range of 14 - 80 kDa with most of the bands overlapping for the two species. Comparison of the protein profile of infected and uninfected Ae. aegypti and Ae. albopictus showed five distinct molecular weight grouping at 73 - 76 kDa (Group 1), 44 - 50 kDa (Group 2), 28 - 31 kDa (Group 3), 20 - 25 kDa (Group 4) and 14 - 17 kDa (Group 5). Predominant bands for both species (infected and uninfected) were between 21 - 25 kDa and 44 - 50 kDa. Protein bands having a molecular weight of 70 kDa were only present in infected Ae. albopictus and those bands having molecular weight of 21 kDa were observed only in infected Ae. aegypti. The rate of digestion of blood meals was more rapid in Ae. albopictus than Ae. aegypti. Uninfected Ae. albopictus completed the blood digestion 2 days after ingestion of a blood meal whereas Ae. aegypti needed 3 days to complete the digestion. The rate of digestion for blood meals was slower for both mosquito species when fed with dengue virus infected blood. The digestion processes were completed 3 and 4 days after blood ingestion for Ae. albopictus and Ae. aegypti, respectively. This could be due to the presence of dengue virus in the blood, which slow down the digestion process. Appearance and disappearance of new protein bands was also observed even after the digestion has completed for both infected mosquito species. In conclusion, dengue virus was shown to induce specific proteins in both Ae. aegypti and Ae. albopictus.  (+info)

Association and host selectivity in multi-host pathogens. (7/5992)

The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens.  (+info)

Is adipose tissue a place for Mycobacterium tuberculosis persistence? (8/5992)

BACKGROUND: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10-15% of the reactivation cases. METHODOLOGY/PRINCIPAL FINDINGS: We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. CONCLUSIONS/SIGNIFICANCE: Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection.  (+info)