Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. (57/821)

Fibrillins are the major glycoprotein components of microfibrils that form a template for tropoelastin during elastic fibrillogenesis. We have examined cell adhesion to assembled purified microfibrils, and its molecular basis. Human dermal fibroblasts exhibited Arg-Gly-Asp and cation-dependent adhesion to microfibrils and recombinant fibrillin-1 protein fragments. Strong integrin alpha 5 beta 1 interactions with fibrillin ligands were identified, but integrin alpha v beta 3 also contributed to cell adhesion. Fluorescence-activated cell sorting analysis confirmed the presence of abundant alpha 5 beta 1 and some alpha v beta 3 receptors on these cells. Adhesion to microfibrils and to Arg-Gly-Asp containing fibrillin-1 protein fragments induced signaling events that led to cell spreading, altered cytoskeletal organization, and enhanced extracellular fibrillin-1 deposition. Differences in cell shape when plated on fibrillin or fibronectin implied substrate-specific alpha 5 beta 1-mediated cellular responses. An Arg-Gly-Asp-independent cell adhesion sequence was also identified within fibrillin-1. Adhesion and spreading of smooth muscle cells on fibrillin ligands was enhanced by antibody-induced beta1 integrin activation. A375-SM melanoma cells bound Arg-Gly-Asp-containing fibrillin-1 protein fragments mainly through alpha v beta 3, whereas HT1080 cells used mainly alpha 5 beta 1. This study has shown that fibrillin microfibrils mediate cell adhesion, that alpha 5 beta 1 and alpha v beta 3 are both important but cell-specific fibrillin-1 receptors, and that cellular interactions with fibrillin-1 influence cell behavior.  (+info)

Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. (58/821)

Endothelial cell migration, a key process in angiogenesis, requires the coordinated integration of motogenic signals elicited by the adhesion of endothelial cells to extracellular matrices and by angiogenic cytokines such as the vascular endothelial growth factor (VEGF). In this study, we found that addition of VEGF to human umbilical vein endothelial cells cultivated on vitronectin triggers a synergistic interaction between the VEGF receptor VEGFR2 and the clustered integrin receptor alphavbeta3. The interaction between VEGFR2 and alphavbeta3 is required for full phosphorylation of VEGFR2 and to drive the activation of motogenic pathways involving focal adhesion kinase (FAK) and stress-activated protein kinase-2/p38 (SAPK2/p38). The signal emanating from the VEGFR2 and alphavbeta3 interaction and leading to SAPK2/p38 activation proceeds directly from VEGFR2. The chaperone Hsp90 is found in a complex that coprecipitates with inactivated VEGFR2, and the association is increased by VEGF and decreased by geldanamycin, a specific inhibitor of Hsp90-mediated events. Geldanamycin also impairs the phosphorylation of FAK that results from the interaction between VEGFR2 and alphavbeta3, and this is accompanied by an inhibition of the recruitment of vinculin to VEGFR2. We conclude that a necessary cross talk should occur between VEGFR2 and the integrin alphavbeta3, to transduce the VEGF signals to SAPK2/p38 and FAK and that Hsp90 is instrumental in the building up of focal adhesions by allowing the phosphorylation of FAK and the recruitment of vinculin to VEGFR2.  (+info)

Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. (59/821)

BACKGROUND: Angiogenesis is a critical determinant of tumor growth and metastasis. We hypothesized that contrast-enhanced ultrasound (CEU) with microbubbles targeted to alpha(v)-integrins expressed on the neovascular endothelium could be used to image angiogenesis. METHODS AND RESULTS: Malignant gliomas were produced in 14 athymic rats by intracerebral implantation of U87MG human glioma cells. On day 14 or day 28 after implantation, CEU was performed with microbubbles targeted to alpha(v)beta3 by surface conjugation of echistatin. CEU perfusion imaging with nontargeted microbubbles was used to derive tumor microvascular blood volume and blood velocity. Vascular alpha(v)-integrin expression was assessed by immunohistochemistry, and microbubble adhesion was characterized by confocal microscopy. Mean tumor size increased markedly from 14 to 28 days (2+/-1 versus 35+/-14 mm2, P<0.001). Tumor blood volume increased by approximately 35% from day 14 to day 28, whereas microvascular blood velocity decreased, especially at the central portions of the tumors. On confocal microscopy, alpha(v)beta3-targeted but not control microbubbles were retained preferentially within the tumor microcirculation. CEU signal from alpha(v)beta3-targeted microbubbles in tumors increased significantly from 14 to 28 days (1.7+/-0.4 versus 3.3+/-1.0 relative units, P<0.05). CEU signal from alpha(v)beta3-targeted microbubbles was greatest at the periphery of tumors, where alpha(v)-integrin expression was most prominent, and correlated well with tumor microvascular blood volume (r=0.86). CONCLUSIONS: CEU with microbubbles targeted to alpha(v)beta3 can noninvasively detect early tumor angiogenesis. This technique, when coupled with changes in blood volume and velocity, may provide insights into the biology of tumor angiogenesis and be used for diagnostic applications.  (+info)

Photocontrol of cell adhesion processes: model studies with cyclic azobenzene-RGD peptides. (60/821)

A photoresponsive integrin ligand was synthesized by backbone-cyclization of a heptapeptide containing the integrin binding motif Arg-Gly-Asp (RGD) with 4-(aminomethyl)phenylazobenzoic acid (AMPB). Surface plasmon enhanced fluorescence spectroscopy showed that binding of the azobenzene peptide to alpha(v)beta(3) integrin depends on the photoisomeric state of the peptide chromophore. The higher affinity of the trans isomer could be rationalized by comparing the NMR conformations of the cis and trans isomers with the recently solved X-ray structure of a cyclic RGD-pentapeptide bound to integrin.  (+info)

Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. (61/821)

We demonstrate a physiological role for tumstatin, a cleavage fragment of the alpha3 chain of type IV collagen (Col IValpha3), which is present in the circulation. Mice with a genetic deletion of Col IValpha3 show accelerated tumor growth associated with enhanced pathological angiogenesis, while angiogenesis associated with development and tissue repair are unaffected. Supplementing Col IValpha3-deficient mice with recombinant tumstatin to a normal physiological concentration abolishes the increased rate of tumor growth. The suppressive effects of tumstatin require alphaVbeta3 integrin expressed on pathological, but not on physiological, angiogenic blood vessels. Mice deficient in matrix metalloproteinase-9, which cleaves tumstatin efficiently from Col IValpha3, have decreased circulating tumstatin and accelerated growth of tumor. These results indicate that MMP-generated fragments of basement membrane collagen can have endogenous function as integrin-mediated suppressors of pathologic angiogenesis and tumor growth.  (+info)

Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. (62/821)

The cytokine/extracellular matrix protein osteopontin (OPN/Eta-1) is an important component of cellular immunity and inflammation. It also acts as a survival, cell-adhesive, and chemotactic factor for endothelial cells. Here, subtractive suppression hybridization showed that serum-deprived murine aortic endothelial (MAE) cells transfected with the angiogenic fibroblast growth factor-2 (FGF2) overexpress OPN compared with parental cells. This was confirmed by Northern blotting and Western blot analysis of the conditioned media in different clones of endothelial cells overexpressing FGF2 and in endothelial cells treated with the recombinant growth factor. In vivo, FGF2 caused OPN expression in newly formed endothelium of the chick embryo chorioallantoic membrane (CAM) and of murine s.c. Matrigel plug implants. Recombinant OPN (rOPN), the fusion protein GST-OPN, and the deletion mutant GST-DeltaRGD-OPN were angiogenic in the CAM assay. Angiogenesis was also triggered by OPN-transfected MAE cells grafted onto the CAM. OPN-driven neovascularization was independent from endothelial alpha(v)beta(3) integrin engagement and was always paralleled by the appearance of a massive mononuclear cell infiltrate. Accordingly, rOPN, GST-OPN, GST-DeltaRGD-OPN, and the conditioned medium of OPN-overexpressing MAE cells were chemotactic for isolated human monocytes. Also, rOPN triggered a proangiogenic phenotype in human monocytes by inducing the expression of the angiogenic cytokines TNF-alpha and IL-8. OPN-mediated recruitment of proangiogenic monocytes may represent a mechanism of amplification of FGF2-induced neovascularization during inflammation, wound healing, and tumor growth.  (+info)

Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. (63/821)

Angiogenesis is essential for tumor growth and metastasis. Because endothelial cells are genetically stable, they rarely acquire resistance to anticancer modalities, and could, thus, be a suitable target for radiation therapy. Heavy ion radiation therapy has attracted attention as an effective modality for cancer therapy because of its highly lethal effects, but the effects of heavy ion irradiation on in vitro cell function associated with angiogenesis have not been reported. Our study found that in vitro angiogenesis was inhibited by high linear energy transfer carbon ion irradiation even at sublethal dose (0.1 Gy). ECV304 and HUVEC human umbilical vascular endothelial cells were irradiated with 290 MeV carbon ion beams of approximately 110 keV/ micro m or 4 MV X-ray of approximately 1 keV/ micro m. Their adhesiveness and migration to vitronectin or osteopontin were inhibited, and capillary-like tube structures in three-dimensional culture were destroyed after carbon ion irradiation concomitant with the inhibition of matrix metalloproteinase-2 activity, down-regulation of alphaVbeta3 integrin, which is one of the adhesion molecules, slight up-regulation of membrane type1- matrix metalloproteinase, and significant up-regulation of tissue inhibitor of metalloproteinase-2. On the other hand, sublethal X-ray irradiation promoted migration of endothelial cells, and the capillary-like tube structure in three-dimensional culture progressed even after 16 Gy irradiation. These results provide an implication that heavy ion beam therapy could be superior to conventional photon beam therapy in preventive effects on in vitro angiogenesis even at sublethal dose, and might inhibit angiogenesis in vivo.  (+info)

Overexpression of platelet-type 12-lipoxygenase promotes tumor cell survival by enhancing alpha(v)beta(3) and alpha(v)beta(5) integrin expression. (64/821)

Arachidonic acid metabolism leads to the generation of biologically active metabolites that regulate cell growth and proliferation, as well as survival and apoptosis. We have demonstrated previously that platelet-type 12-lipoxygenase (LOX) regulates the growth and survival of a number of cancer cells. In this study, we show that overexpression of platelet-type 12-LOX in prostate cancer PC3 cells or epithelial cancer A431 cells significantly extended their survival and delayed apoptosis when cultured under serum-free conditions. These effects were shown to be a result of enhanced surface integrin expression, resulting in a more spread morphology of the cells in culture. PC3 cells transfected with 12-LOX displayed increased alpha(v)beta(3) and alpha(v)beta(5) integrin expression, whereas other integrins were unaltered. Transfected A431 cells did not express alpha(v)beta(3); however, alpha(v)beta(5) integrin expression was increased. Treatment of both transfected cell lines with monoclonal antibody to alpha(v)beta(5) (and in the case of PC3 cells, anti-alpha(v)beta(3)) resulted in significant apoptosis. In addition, treatment with 100 nM 12(S)-hydroxy-eicosatetraenoic acid, the end product of platelet-type 12-LOX, but not other hydroxy-eicosatetraenoic acids, enhanced the survival of wild-type PC3 and A431 cells and resulted in increased expression of alpha(v)beta(5). Furthermore, Baicalein or N-benzyl-N-hydroxy-5-phenylpentamide, specific 12-LOX inhibitors, significantly decreased alpha(v)beta(5)-mediated adhesion and survival in 12-LOX-overexpressing cells. The results show that 12-LOX regulates cell survival and apoptosis by affecting the expression and localization of the vitronectin receptors, alpha(v)beta(3) and alpha(v)beta(5), in two cancer cell lines.  (+info)