Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. (17/3239)

Excessive cyclo-oxygenase-2 (COX-2) induction may play a role in chronic neurological diseases characterized by inflammation and astrogliosis. We have previously identified an astroglial receptor for extracellular nucleotides, a P2Y receptor, whose stimulation leads to arachidonic acid (AA) release, followed, 3 days later, by morphological changes resembling reactive astrogliosis. Since COX-2 may be upregulated by AA metabolites, we assessed a possible role for COX-2 in P2Y receptor-mediated astrogliosis. A brief challenge of rat astrocytes with the ATP analogue alpha,beta-methylene ATP (alpha,beta(me)ATP) resulted, 24 h later, in significantly increased COX-2 expression. The selective COX-2 inhibitor NS-398 completely abolished alpha,beta(me)ATP-induced astrocytic activation. Constitutive astroglial COX-1 or COX-2 did not play any role in purine-induced reactive astrogliosis. PGE2, a main metabolite of COX-2, also induced astrocytic activation. These data suggest that a P2Y receptor mediates reactive astrogliosis via induction of COX-2. Antagonists selective for this receptor may counteract excessive COX-2 activation in both acute and chronic neurological diseases.  (+info)

Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. (18/3239)

We investigated whether curcumin, a chemopreventive agent, inhibited chenodeoxycholate (CD)- or phorbol ester (PMA)-mediated induction of cyclooxygenase-2 (COX-2) in several gastrointestinal cell lines (SK-GT-4, SCC450, IEC-18 and HCA-7). Treatment with curcumin suppressed CD- and PMA-mediated induction of COX-2 protein and synthesis of prostaglandin E2. Curcumin also suppressed the induction of COX-2 mRNA by CD and PMA. Nuclear run-offs revealed increased rates of COX-2 transcription after treatment with CD or PMA and these effects were inhibited by curcumin. Treatment with CD or PMA increased binding of AP-1 to DNA. This effect was also blocked by curcumin. In addition to the above effects on gene expression, we found that curcumin directly inhibited the activity of COX-2. These data provide new insights into the anticancer properties of curcumin.  (+info)

Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. (19/3239)

We have previously shown that in rat renal cortex, cyclooxygenase-2 (COX-2) expression is localized to cTALH cells in the region of the macula densa, and that dietary salt restriction increases COX-2 expression. Administration of the angiotensin converting inhibitor, captopril, further increased COX-2 mRNA and renal cortical COX-2 immunoreactivity, with the most pronounced expression in the macula densa. Administration of an AT1 receptor antagonist, losartan, also significantly increased cortical COX-2 mRNA expression and COX-2 immunoreactivity. Mutant mice homozygous for both Agtr1a and Agtr1b null mutations (Agtr1a-/-,Agtr1b-/-) demonstrated large increases in immunoreactive COX-2 expression inthe cTALH/macula densa. To determine whether increased COX-2expression in response to ACE inhibition mediated increases in renin production, rats were treated with captopril for one week with or without the specific COX-2 inhibitor, SC58236. Plasma renin activity increased significantly in the captropril group, and this increase was significantly inhibited by simultaneous treatment with SC58236. Thus, these studies indicated that angiotensin II inhibitors augment upregulation of renal cortical COX-2 in states of volume depletion, suggesting that negative feedback by the renin-angiotensin system modulates renal cortical COX-2 expression and that COX-2 is a mediator of increased renin production in response to inhibition of angiotension II production.  (+info)

High-density lipoproteins differentially modulate cytokine-induced expression of E-selectin and cyclooxygenase-2. (20/3239)

Atherogenesis is a multifactorial chronic inflammatory disease in which low plasma levels of HDLs are a strong predictor of the condition. Although the mechanism of protection by HDLs is not precisely known, HDLs have been shown to influence many of the events involved in the development of atherosclerosis. Previously we have shown that HDLs inhibited the cytokine-induced expression of adhesion molecules (E-selectin, VCAM-1, and ICAM-1) by endothelial cells (ECs). As the complete transcriptional regulation of all 3 genes requires the NF-kappaB family of transcription factors, we examined the effect of HDLs on activation of NF-kappaB. We also investigated the effect of HDLs on 2 other cytokine-induced genes, granulocyte-macrophage colony-stimulating factor (GM-CSF) and cyclooxygenase (Cox-2; prostaglandin H2 synthase, EC 0.1.14.99.1). E-selectin expression in response to tumor necrosis factor-alpha (TNFalpha) was, as expected, inhibited in ECs that had been preincubated with HDLs. However, the level of secretion of GM-CSF in the same cultures was no different from control. In a similar manner, although HDLs had no effect on steady-state mRNA levels of GM-CSF, the levels of E-selectin were significantly inhibited by HDLs. In transient cotransfection experiments we found that HDLs inhibited the cytokine-induced expression of a reporter gene driven by the E-selectin proximal promoter (-383 to 80) but had no effect on the expression of a reporter gene driven under the control of the proximal promoter of GM-CSF (-627 to 28). As would be predicted from this differential response, HDLs did not influence the nuclear translocation or DNA binding of NF-kappaB, or alter the kinetics of degradation and resynthesis of the inhibitory protein IkappaBalpha. We found that HDLs synergized with cytokine to enhance the expression of Cox-2 and induce the synthesis of its main EC product, prostacyclin (PGI2), a potent inhibitor of platelet and leukocyte functions. In conclusion, HDL induces an antiinflammatory phenotype in cytokine-induced ECs, synergizing with cytokine to induce elevation of Cox-2 in addition to inhibiting adhesion molecule expression. Our studies show that these differential effects are mediated in a manner that is likely to be independent of NF-kappaB per se.  (+info)

Elevation of blood pressure by genetic and pharmacological disruption of the ETB receptor in mice. (21/3239)

Exogenously administered endothelin (ET) elicits both pressor and depressor responses through the ETA and/or the ETB receptor on vascular smooth muscle cells and ETB on endothelial cells. To test whether ETB has pressor or depressor effects under basal physiological conditions, we determined arterial blood pressure (BP) in ETB-deficient mice obtained by crossing inbred mice heterozygous for targeted disruption of the ETB gene with mice homozygous for the piebald (s) mutation of the ETB gene (ETBs/s). F1 ETB-/s and ETB+/s progeny share an identical genetic background but have ETB levels that are approximately (1)/(8) and (5)/(8), respectively, of wild-type mice (ETB+/+). BP in ETB-/s mice was significantly higher, by approximately 20 mmHg, than that in ETB+/s or ETB+/+ mice. Immunoreactive ET-1 concentration in plasma as well as respiratory parameters was not different between ETB-/s and ETB+/s mice. A selective ETB antagonist, BQ-788, increased BP in ETB+/s and ETB+/+ but not in ETB-/s mice. Pretreatment with indomethacin, but not with NG-monomethyl-L-arginine, can attenuate the observed pressor response to BQ-788. The selective ETA antagonist BQ-123 did not ameliorate the increased BP in ETB-/s mice. Moreover, BP in mice heterozygous for targeted disruption of the ETA gene was not different from that in wild-type controls. These results suggest that endogenous ET elicits a depressor effect through ETB under basal conditions, in part through tonic production of prostaglandins, and not through secondary mechanisms involving respiratory control or clearance of circulating ET.  (+info)

Differential expression and regulation of cyclooxygenase isozymes in thymic stromal cells. (22/3239)

Prostaglandins (PGs) are lipid-derived mediators of rapid and localized cellular responses. Given the role of PG in supporting thymic T cell development, we investigated the expression of the PG synthases, also known as cyclooxygenases (COX)-1 and -2, in the biosynthesis of PGs in thymic stromal cell lines. The predominant isozyme expressed in cortical thymic epithelial cells was COX-1, while COX-2 predominated in the medulla. IFN-gamma up-regulated expression and activity of COX-2 in medullary cells, in which COX-2 was expressed constitutively. In contrast, IFN-gamma down-regulated COX-1 activity, but not expression, in cortical cells. Stromal cells support T cell development in the thymus, although the mediators of this effect are unknown. Selective inhibition of COX-2, but not COX-1, blocked the adhesion of CD4+CD8+ and CD4+CD8- thymocytes to medullary cell lines. No effect of the inhibitors was observed on the interactions of thymocytes with cortical epithelial lines. These data further support the differential regulation of COX-1 and COX-2 expression and function in thymic stromal cells. PGs produced by COX-2 in the medullary thymic stroma may regulate the development of thymocytes by modulating their interaction with stromal cells.  (+info)

Limited anti-inflammatory efficacy of cyclo-oxygenase-2 inhibition in carrageenan-airpouch inflammation. (23/3239)

1. Cyclo-oxygenase-2 (COX-2) is expressed at sites of inflammation and is believed to be the major source of inflammation-associated prostaglandin synthesis. Selective inhibition of COX-2 has been suggested to produce anti-inflammatory effects with reduced toxicity in the gastrointestinal tract. We examined the extent to which suppression of COX-2 led to inhibition of various components of inflammation in the carrageenan-airpouch model in the rat. 2. Indomethacin (> or =0.3 mg kg(-1)), nimesulide (> or =3 mg kg(-1)) and the selective COX-2 inhibitor, SC-58125 (> or =0.3 mg kg(-1)), significantly suppressed the production of prostaglandin E2 at the site of inflammation. At higher doses, indomethacin (> or =1 mg kg(-1)) and nimesulide (30 mg kg(-1)), but not SC-58125 (up to 10 mg kg(-1)), significantly inhibited COX-1 activity (as measured by whole blood thromboxane synthesis). 3. All three test drugs significantly reduced the volume of exudate in the airpouch, but only at doses greater than those required for substantial (>90%) suppression of COX-2 activity. Similarly, reduction of leukocyte infiltration was only observed with the doses of indomethacin and nimesulide that caused significant suppression of COX-1 activity. 4. SC-58125 did not significantly affect leukocyte infiltration into the airpouch at any dose tested (up to 10 mg kg(-1)). A second selective COX-2 inhibitor, Dup-697, was also found to suppress exudate PGE2 levels without significant effects on leukocyte infiltration. 5. These results indicate that selective inhibition of COX-2 results in profound suppression of PGE2 synthesis in the carrageenan-airpouch, but does not affect leukocyte infiltration. Exudate volume was only reduced with the highly selective COX-2 inhibitor when a dose far above that necessary for suppression of COX-2 activity was used. Inhibition of leukocyte infiltration was observed with indomethacin and nimesulide, but only at doses that inhibited both COX-1 and COX-2.  (+info)

Reactions of prostaglandin endoperoxide synthase with hydroperoxide and reducing substrates under single turnover conditions. (24/3239)

The peroxidase reaction of prostaglandin endoperoxide synthase was investigated by transient state kinetics using stoichiometric amounts of substrates. The rate constants for the conversion of compound I to intermediate II determined with a stoichiometric amount of hydroperoxide were found to be lower by an order of magnitude than when an excess of hydroperoxide was used. The difference was attributed to ability of the compound I of prostaglandin endoperoxide synthase to be reduced by the excess of hydroperoxide. This suggests that the true rate constant of unimolecular conversion compound I to intermediate II at 3 degrees C is 5-10 s-1 instead of 50-200 s-1 as reported before. The latter value rather characterizes the combined process of spontaneous and hydroperoxide-dependent transformation of compound I. Stoichiometric amounts of reducing substrates significantly stimulated transformation of compound I. This effect could not be entirely explained by their reducing action, which was measured by following the oxidation kinetics. The results of the global fit of the experimental data suggest that reducing substrates, in addition to their direct action in reducing compound I to compound II, indirectly stimulate transformation of compound I to the tyrosyl radical form of intermediate II, thereby stimulating the cyclooxygenase reaction.  (+info)