An essential role for antibody in neutrophil and eosinophil recruitment to the cornea: B cell-deficient (microMT) mice fail to develop Th2-dependent, helminth-mediated keratitis. (1/1555)

Invasion of the corneal stroma by neutrophils and eosinophils and subsequent degranulation disrupts corneal clarity and can result in permanent loss of vision. In the current study, we used a model of helminth-induced inflammation to demonstrate a novel role for Ab in mediating recruitment of these inflammatory cells to the central cornea. C57BL/6 and B cell-deficient (microMT) mice were immunized s. c. and injected intrastromally with Ags from the parasitic helminth Onchocerca volvulus (which causes river blindness). C57BL/6 mice developed pronounced corneal opacification, which was associated with an Ag-specific IL-5 response and peripheral eosinophilia, temporal recruitment of neutrophils and eosinophils from the limbal vessels to the peripheral cornea and subsequent migration to the central cornea. In contrast, the corneas of microMT mice failed to develop keratitis after intrastromal injection of parasite Ags unless Ags were injected with immune sera. Eosinophils were recruited from the limbal vessels to the peripheral cornea in microMT mice, but failed to migrate to the central cornea, whereas neutrophil recruitment was impaired at both stages. With the exception of IL-5, T cell responses and peripheral eosinophils were not significantly different between C57BL/6 and microMT mice. Taken together, these findings not only demonstrate that Ab is required for the development of keratitis, but also show that recruitment of neutrophils to the cornea is Ab-dependent, whereas eosinophil migration is only partially dependent upon Ab interactions.  (+info)

Migration of CD18-deficient neutrophils in vitro: evidence for a CD18-independent pathway induced by IL-8. (2/1555)

Neutrophils isolated from a child with severe leukocyte adhesion deficiency 1 (LAD1) had a complete absence of expression of the CD11/CD18 beta2 integrin family of adhesion molecules, and were shown to be deficient in the in vitro adhesion and migration properties. However, we found that interleukin-8 (IL8), a potent chemoattractant for neutrophils, and sputum sol phase induced these LAD1 neutrophils to migrate through an endothelial cell layer in vitro, and confirmed that this migration was CD18-independent. These findings add to evidence of CD18-independent mechanisms of neutrophil recruitment, in particular neutrophil infiltration into the lungs, where IL8 may be an important recruitment factor.  (+info)

CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. (3/1555)

Invasive pulmonary aspergillosis is a devastating complication of immunosuppression, which occurs in association with neutrophil dysfunction or deficiency. ELR+ CXC chemokines are a subfamily of chemokines that play a critical role in neutrophil chemotaxis and activation both in vitro and in vivo. We hypothesized that interaction of these ligands with CXC chemokine receptor-2 (CXCR2), their sole murine receptor, is a major component of neutrophil-dependent pulmonary host defense against Aspergillus fumigatus. In immunocompetent animals, neutrophils were recruited to the lung in response to intratracheally administered A. fumigatus conidia. In a model of transient in vivo depletion of neutrophils, animals developed invasive pulmonary aspergillosis, associated with delayed influx of neutrophils into the lung. In both normal and neutrophil-depleted animals, the ELR+ CXC chemokines MIP-2 and KC were induced in response to intratracheal administration of conidia. Ab-mediated neutralization of the common ELR+ CXC chemokine receptor, CXCR2, resulted in development of invasive disease indistinguishable from the disease in neutrophil-depleted animals, while control animals were highly resistant to the development of infection. CXCR2 neutralization was associated with reduced lung neutrophil influx and resulted in a marked increase in mortality compared with controls. In contrast, animals with constitutive lung-specific transgenic expression of KC were resistant to the organism, with reduced mortality and lower lung burden of fungus. We conclude that CXCR2 ligands are essential mediators of host defense against A. fumigatus, and may be important targets in devising future therapeutic strategies in this disease.  (+info)

Lipoteichoic acid inhibits lipopolysaccharide-induced adhesion molecule expression and IL-8 release in human lung microvascular endothelial cells. (4/1555)

Cell adhesion molecule expression (CAM) and IL-8 release in lung microvascular endothelium facilitate neutrophil accumulation in the lung. This study investigated the effects of lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria, alone and with LPS or TNF-alpha, on CAM expression and IL-8 release in human lung microvascular endothelial cells (HLMVEC). The concentration-dependent effects of Staphylococcus aureus (S. aureus) LTA (0.3-30 microg/ml) on ICAM-1 and E-selectin expression and IL-8 release were bell shaped. Streptococcus pyogenes (S. pyogenes) LTA had no effect on CAM expression, but caused a concentration-dependent increase in IL-8 release. S. aureus and S. pyogenes LTA (30 microg/ml) abolished LPS-induced CAM expression, and S. aureus LTA reduced LPS-induced IL-8 release. In contrast, the effects of S. aureus LTA with TNF-alpha on CAM expression and IL-8 release were additive. Inhibitory effects of LTA were not due to decreased HLMVEC viability, as assessed by ethidium homodimer-1 uptake. Changes in neutrophil adhesion to HLMVEC paralleled changes in CAM expression. Using RT-PCR to assess mRNA levels, S. aureus LTA (3 microg/ml) caused a protein synthesis-dependent reduction (75%) in LPS-induced IL-8 mRNA and decreased the IL-8 mRNA half-life from >6 h with LPS to approximately 2 h. These results suggest that mechanisms exist to prevent excessive endothelial cell activation in the presence of high concentrations of bacterial products. However, inhibition of HLMVEC CAM expression and IL-8 release ultimately may contribute to decreased neutrophil accumulation, persistence of bacteria in the lung, and increased severity of infection.  (+info)

NH2- and COOH-terminal truncations of murine granulocyte chemotactic protein-2 augment the in vitro and in vivo neutrophil chemotactic potency. (5/1555)

Chemokines are important mediators of leukocyte migration during the inflammatory response. Post-translational modifications affect the biological potency of chemokines. In addition to previously identified NH2-terminally truncated forms, COOH-terminally truncated forms of the CXC chemokine murine granulocyte chemotactic protein-2 (GCP-2) were purified from conditioned medium of stimulated fibroblasts. The truncations generated 28 natural murine GCP-2 isoforms containing 69-92 residues, including most intermediate forms. Both NH2- and COOH-terminal truncations of GCP-2 resulted in enhanced chemotactic potency for human and murine neutrophils in vitro. The truncated isoform GCP-2(9-78) was 30-fold more potent than intact GCP-2(1-92)/LPS-induced CXC chemokine (LIX) at inducing an intracellular calcium increase in human neutrophils. After intradermal injection in mice, GCP-2(9-78) was also more effective than GCP-2(1-92)/LIX at inducing neutrophil infiltration. Similar to human IL-8 and GCP-2, murine GCP-2(9-78) and macrophage inflammatory protein-2 (MIP-2) induced calcium increases in both CXCR1 and CXCR2 transfectants. Murine GCP-2(9-78) could desensitize the calcium response induced by MIP-2 in human neutrophils and vice versa. Furthermore, MIP-2 and truncated GCP-2(9-78), but not intact GCP-2(1-92)/LIX, partially desensitized the calcium response to human IL-8 in human neutrophils. Taken together, these findings point to an important role of post-translationally modified GCP-2 to replace IL-8 in the mouse.  (+info)

alpha9beta1 integrin is expressed on human neutrophils and contributes to neutrophil migration through human lung and synovial fibroblast barriers. (6/1555)

Accumulation of leukocytes in inflamed tissue involves their migration through vascular endothelium and then in the connective tissue. Recently we utilized a barrier of human synovial, dermal, and lung fibroblasts (HSF, HDF, and HLF) grown on polycarbonate filters as a model of human polymorphonuclear leukocyte (PMN) migration through connective tissue. The beta2 integrins (CD 11/ CD18) and alpha4, alpha5, and alpha6beta1 (VLA-4, -5, and -6) integrins each contributed to this PMN migration. Here we report that on human blood leukocytes, alpha9beta1 (VLA-9) is expressed only on PMNs and that it is up-regulated after PMN activation. Based on monoclonal antibody (mAb) blocking studies, alpha9beta1 integrin contributed to C5a-induced PMN migration through fibroblast (HLF and HSF) barriers. This role was apparent only when alternate mechanisms such as CD18, alpha4, alpha5, and alpha6beta1 integrins were blocked and then mAb to alpha9beta1 integrin inhibited the residual PMN migration (by 40-50%) through the HLF or HSF barrier, resulting in > or = 75% inhibition overall. In contrast, PMN migration across interleukin-1-activated endothelium (HUVEC) in response to a C5a gradient, which is partly (30-40%) via CD11/CD18-independent mechanisms, was not inhibited by adhesion blocking by mAbs to alpha4, alpha5, alpha6, and alpha9beta1 even in combination. These results indicate that alpha9beta1 integrin on PMN may have a special role, in conjunction with other beta1 integrins, in mediating PMN migration in the extravascular space, and may contribute to differential neutrophil function within tissues.  (+info)

N-bisphosphonates cause gastric epithelial injury independent of effects on the microcirculation. (7/1555)

BACKGROUND: Nitrogen-containing bisphosphonates have been shown to be effective for the treatment of osteoporosis and Paget's disease of bone. Unfortunately, these drugs also have the capacity to irritate the upper gastrointestinal mucosa. In this study we investigated the ability of alendronate and pamidronate to directly damage the gastric epithelium and attempted to determine whether these drugs caused injury through gastric microcirculatory alterations. METHODS: An ex vivo gastric chamber model was used. Effects of topically applied alendronate and pamidronate on transmucosal potential difference and epithelial integrity (histology) were determined. Also, the effects of agents capable of preventing microvascular injury in the stomach (PGE2 and two nitric oxide donors) were examined for their ability to prevent gastric injury induced by the two N-bisphosphonates. RESULTS: Alendronate and pamidronate caused a concentration-dependent decrease in transmucosal potential difference, widespread epithelial injury and infiltration of neutrophils into the mucosa. PGE2 and the two nitric oxide donors did not prevent the changes in potential difference or the epithelial injury, but did reduce neutrophil infiltration. Significant release of PGE2 into the lumen was observed following application of the two bisphosphonates, but neither drug altered mucosal blood flow. CONCLUSIONS: These results suggest that these N-bis- phosphonates directly damage the gastric epithelium independent of actions on the microvasculature.  (+info)

Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the beta-glucan present in their cell wall. (8/1555)

1. The inflammatory cell influx towards the peritoneal cavity in mice inoculated i.p. with live or dead Histoplasma capsulatum or with its subcellular preparations was studied. We also evaluated the effects of dexamethasone (Dexa) or MK886, an inhibitor of leukotriene (LT) biosynthesis, on the recruitment of leukocytes. 2. Live yeast form of fungus (LYH) induced an increase in neutrophils (NE) which was highest 4 to 24 h after inoculation. Mononuclear cell (MN) migration beginning at 24 h with a gradual increase over 48 and 168 h, and an eosinophil (EO) recruitment occurs between 24 and 48 h. 3. NE and EO recruitment induced by dead mycelial form of fungus (DMH) was greater than that observed for dead yeast form of fungus (DYH). A similar leukocyte migration pattern was seen after i.p. injection of the alkali-insoluble fraction (F1) from DYH (F1Y) and F1 from DMH (F1M) this being more active than former. The difference in concentration of beta-glucan in DYH and DMH could explain the different inflammatory capacity exhibited by the two forms of H. capsulatum. 4. LT seems to be the principal mediator of leukocyte migration in response to LYH, DYH or DMH or to beta-glucan. However, other mediators appear to contribute to NE and EO migration since the treatment with Dexa was more effective in inhibiting cell migration than MK886. Complement dependent leukocyte migration may participate in this recruitment. Treatment with MK886 completely abolished MN cell migration, indicating its dependence on the presence of LT.  (+info)