An investigation into the binding of the carcinogen 15,16-dihydro-11-methylcyclopenta[a]phenanthren-17-one to DNA in vitro. (1/8768)

After metabolic activation the carcinogen 15,16-dihydro-11-[3H]methylcyclopenta[a]phenanthren-17-one binds to DNA in vitro, and this binding is prevented by 7,8-benzoflavone. Radioactivity cannot be removed from the DNA with organic solvents or by chromatography on Sephadex G-50, even after heat denaturation of the DNA. Enzymatic hydrolysis yields radioactive fractions, which elute from a column of Sephadex LH-20 immediately after the natural nucleosides. At least two species of reactive metabolites are involved in this bending, those with a half-life of a few hr and others with greater stability. After extraction from the aqueous incubation mixture, they could be detected in discrete polar fractions from separations of the complex metabolite mixture by high-pressure liquid chromatography. Their ability to bind to DNA decreased with time at ambient temperature, and they were rapidly deactivated by acid. 7,8-Benzolflavone acted by suppressing the formation of polar metabolites derived from enzymatic oxidation of the aromatic double bonds. The inhibitor had no effect on the enzymes hydroxylating saturated carbon; hence it is unlikely that metabolism of the methyl group is important in conversion of this carcinogen to its proximate form, although the presence of the 11-methyl group is essential for carcinogenic activity in this series.  (+info)

The incorporation of 5-iodo-2'-deoxyuridine into the DNA of HeLa cells and the induction of alkaline phosphatase activity. (2/8768)

Inhibition of DNA synthesis during the period of exposure of HeLa cells to 5-iodo-2'-deoxyuridine (IUdR) inhibited the induction of alkaline phosphatase activity. This finding, taken together with previous findings that IUdR did not induce alkaline phosphatase activity in the presence of 2-fold molar excess thymidinemonstrated that IUdR incorporation into DNA is correlated with the increase in alkaline phosphatase activity. With the exception of an interim period described in the text, induction of alkaline phosphatase activity was linearly related to medium concentrations of IUdR of up to at least 3 muM. However, the extent of IUdR substitution in DNA did not appear to be related to the degree of enzyme induction. Alkaline phosphatase activity continued to increase at medium concentrations of IUdR from 1 to 3 muM, while little further substitution of DNA occurred.  (+info)

Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. (3/8768)

Shp-2 is an SH2 domain-containing protein tyrosine phosphatase. Although the mechanism remains to be defined, substantial experimental data suggest that Shp-2 is primarily a positive regulator in cell growth and development. We present evidence here that Shp-2, while acting to promote mitogenic signals, also functions as a negative effector in interferon (IFN)-induced growth-inhibitory and apoptotic pathways. Treatment of mouse fibroblast cells lacking a functional Shp-2 with IFN-alpha or IFN-gamma resulted in an augmented suppression of cell viability compared to that of wild-type cells. To dissect the molecular mechanism, we examined IFN-induced activation of signal transducers and activators of transcription (STATs) by electrophoretic mobility shift assay, using a specific DNA probe (hSIE). The amounts of STAT proteins bound to hSIE upon IFN-alpha or IFN-gamma stimulation were significantly increased in Shp-2(-/-) cells. Consistently, tyrosine phosphorylation levels of Stat1 upon IFN-gamma treatment and, to a lesser extent, upon IFN-alpha stimulation were markedly elevated in mutant cells. Furthermore, IFN-gamma induced a higher level of caspase 1 expression in Shp-2(-/-) cells than in wild-type cells. Reintroduction of wild-type Shp-2 protein reversed the hypersensitivity of Shp-2(-/-) fibroblasts to the cytotoxic effect of IFN-alpha and IFN-gamma. Excessive activation of STATs by IFNs was also diminished in mutant cells in which Shp-2 had been reintroduced. Together, these results establish that Shp-2 functions as a negative regulator of the Jak/STAT pathway. We propose that Shp-2 acts to promote cell growth and survival through two mechanisms, i.e., the stimulation of growth factor-initiated mitogenic pathways and the suppression of cytotoxic effect elicited by cytokines, such as IFNs.  (+info)

Transformation of intestinal epithelial cells by chronic TGF-beta1 treatment results in downregulation of the type II TGF-beta receptor and induction of cyclooxygenase-2. (4/8768)

The precise role of TGF-beta in colorectal carcinogenesis is not clear. The purpose of this study was to determine the phenotypic alterations caused by chronic exposure to TGF-beta in non-transformed intestinal epithelial (RIE-1) cells. Growth of RIE-1 cells was inhibited by >75% following TGF-beta1 treatment for 7 days, after which the cells resumed a normal growth despite the presence of TGF-beta1. These 'TGF-beta-resistant' cells (RIE-Tr) were continuously exposed to TGF-beta for >50 days. Unlike the parental RIE cells, RIE-Tr cells lost contact inhibition, formed foci in culture, grew in soft agarose. RIE-Tr cells demonstrated TGF-beta-dependent invasive potential in an in vitro assay and were resistant to Matrigel and Na-butyrate-induced apoptosis. The RIE-Tr cells were also tumorigenic in nude mice. The transformed phenotype of RIE-Tr cells was associated with a 95% decrease in the level of the type II TGF-beta receptor (TbetaRII) protein, a 40-fold increase in cyclooxygenase-2 (COX-2) protein, and 5.9-fold increase in the production of prostacyclin. Most RIE-Tr subclones that expressed low levels of TbetaRII and high levels of COX-2 were tumorigenic. Those subclones that express abundant TbetaRII and low levels of COX-2 were not tumorigenic in nude mice. A selective COX-2 inhibitor inhibited RIE-Tr cell growth in culture and tumor growth in nude mice. The reduced expression of TbetaRII, increased expression of COX-2, and the ability to form colonies in Matrigel were all reversible upon withdrawal of exogenous TGF-beta1 for the RIE-Tr cells.  (+info)

Interleukin-6 dependent induction of the cyclin dependent kinase inhibitor p21WAF1/CIP1 is lost during progression of human malignant melanoma. (5/8768)

Human melanoma cell lines derived from early stage primary tumors are particularly sensitive to growth arrest induced by interleukin-6 (IL-6). This response is lost in cell lines derived from advanced lesions, a phenomenon which may contribute to tumor aggressiveness. We sought to determine whether resistance to growth inhibition by IL-6 can be explained by oncogenic alterations in cell cycle regulators or relevant components of intracellular signaling. Our results show that IL-6 treatment of early stage melanoma cell lines caused G1 arrest, which could not be explained by changes in levels of G1 cyclins (D1, E), cdks (cdk4, cdk2) or by loss of cyclin/cdk complex formation. Instead, IL-6 caused a marked induction of the cdk inhibitor p21WAF1/CIP1 in three different IL-6 sensitive cell lines, two of which also showed a marked accumulation of the cdk inhibitor p27Kip1. In contrast, IL-6 failed to induce p21WAF1/CIP1 transcript and did not increase p21WAF1/CIP1 or p27kip1 proteins in any of the resistant lines. In fact, of five IL-6 resistant cell lines, only two expressed detectable levels of p21WAF1/CIP1 mRNA and protein, while in three other lines, p21WAF1/CIP1 was undetectable. IL-6 dependent upregulation of p21WAF1/CIP1 was associated with binding of both STAT3 and STAT1 to the p21WAF1/CIP1 promoter. Surprisingly, however, IL-6 stimulated STAT binding to this promoter in both sensitive and resistant cell lines (with one exception), suggesting that gross deregulation of this event is not the unifying cause of the defect in p21WAF1/CIP1 induction in IL-6 resistant cells. In somatic cell hybrids of IL-6 sensitive and resistant cell lines, the resistant phenotype was dominant and IL-6 failed to induce p21WAF1/CIP1. Thus, our results suggest that in early stage human melanoma cells, IL-6 induced growth inhibition involves induction of p21WAF1/CIP1 which is lost in the course of tumor progression presumably as a result of a dominant oncogenic event.  (+info)

Estrogen-dependent and independent activation of the P1 promoter of the p53 gene in transiently transfected breast cancer cells. (6/8768)

Loss of p53 function by mutational inactivation is the most common marker of the cancerous phenotype. Previous studies from our laboratory have demonstrated 17 beta estradiol (E2) induction of p53 protein expression in breast cancer cells. Although direct effects of E2 on the expression of p53 gene are not known, the steroid is a potent regulator of c-Myc transcription. In the present studies, we have examined the ability of E2 and antiestrogens to regulate the P1 promoter of the p53 gene which contains a c-Myc responsive element. Estrogen receptor (ER)-positive T47D and MCF-7 cells were transiently transfected with the P1CAT reporter plasmid and levels of CAT activity in response to serum, E2 and antiestrogens were monitored. Factors in serum were noted to be the dominant inducers of chloramphenicol acetyltransferase (CAT) expression in MCF-7 cells. The levels of CAT were drastically reduced when cells were maintained in serum free medium (SFM). However, a subtle ER-mediated induction of CAT expression was detectable when MCF-7 cells, cultured in SFM, were treated with E2. In serum-stimulated T47D cells, the CAT expression was minimal. The full ER antagonist, ICI 182 780 (ICI) had no effect. Treatment with E2 or 4-hydroxy tamoxifen (OHT) resulted in P1CAT induction; OHT was more effective than E2. Consistent with c-Myc regulation of the P1 promoter, E2 stimulated endogenous c-Myc in both cell lines. Two forms of c-Myc were expressed independent of E2 stimuli. The expression of a third more rapidly migrating form was E2-dependent and ER-mediated since it was blocked by the full ER antagonist, ICI, but not by the ER agonist/antagonist OHT. These data demonstrate both ER-mediated and ER-independent regulation of c-Myc and the P1 promoter of the p53 gene, and show differential effects of the two classes of antiestrogens in their ability to induce the P1 promoter of the p53 gene in breast cancer cells.  (+info)

Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2. (7/8768)

We previously reported that rat pheochromocytoma PC12 cells express the neuronal differentiated phenotype under hyperoxia through the production of reactive oxygen species (ROS). In the present study, we found that in this phenotype, Bcl-2, an apoptosis inhibitor, affects mitogen-activated protein (MAP)-kinase activity, which is known as a key enzyme of the signal-transduction cascade for differentiation. When PC12 cells were cultured under hyperoxia, a rapid increase in MAP-kinase activity, including that of both p42 and p44, was observed. Although the activity level then decreased quickly, activity higher than the control level was observed for 48 h. PD98059, an inhibitor of MAP kinase, suppressed the hyperoxia-induced neurite extensions, suggesting the involvement of MAP-kinase activity in the mechanism of differentiation induced by ROS. An elevation of Bcl-2 expression was observed after culturing PC12 cells for 24 h under hyperoxia. This Bcl-2 elevation was not affected by treatment with PD98059, suggesting that it did not directly induce neurite extension under hyperoxia. However, the blockade of the Bcl-2 elevation by an antisense oligonucleotide inhibited the sustained MAP-kinase activity and neurite extensions under hyperoxia. Further, in PC12 cells highly expressing Bcl-2, the sustained MAP-kinase activity and neurite extensions under hyperoxia were enhanced. These results suggested that MAP kinase is activated through the production of ROS, and the subsequent elevation of Bcl-2 expression sustains the MAP-kinase activity, resulting in the induction of the neuronal-differentiation phenotype of PC12 cells under hyperoxia.  (+info)

In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. (8/8768)

The widely used anticancer prodrug cyclophosphamide (CPA) is activated in liver by a 4-hydroxylation reaction primarily catalyzed by cytochrome P-4502B and P-4502C enzymes. An alternative metabolic pathway involves CPA N-dechloroethylation to yield chloroacetaldehyde (CA), a P-4503A-catalyzed deactivation/neurotoxication reaction. The in vivo modulation of these alternative, competing pathways of P-450 metabolism was investigated in pharmacokinetic studies carried out in the rat model. Peak plasma concentrations (Cmax) for 4-OH-CPA and CA were increased by 3- to 4-fold, and apparent plasma half-lives of both metabolites were correspondingly shortened in rats pretreated with phenobarbital (PB), an inducer of P-4502B and P-4503A enzymes. However, PB had no net impact on the extent of drug activation or its partitioning between these alternative metabolic pathways, as judged from AUC values (area-under-the-plasma concentration x time curve) for 4-OH-CPA and CA. The P-4503A inhibitor troleandomycin (TAO) decreased plasma Cmax and AUC of CA (80-85% decrease) without changing the Cmax or AUC of 4-OH-CPA in uninduced rats. In PB-induced rats, TAO decreased AUCCA by 73%, whereas it increased AUC4-OH-CPA by 93%. TAO thus selectively suppresses CPA N-dechloroethylation, thereby increasing the availability of drug for P-450 activation via 4-hydroxylation. By contrast, dexamethasone, a P-4503A inducer and antiemetic widely used in patients with cancer, stimulated large, undesirable increases in the Cmax and AUC of CA (8- and 4-fold, respectively) while reducing the AUC of the 4-hydroxylation pathway by approximately 60%. Tumor excision/in vitro colony formation and tumor growth delay assays using an in vivo 9L gliosarcoma solid tumor model revealed that TAO suppression of CPA N-dechloroethylation could be achieved without compromising the antitumor effect of CPA. The combination of PB with TAO did not, however, enhance the antitumor activity of CPA, despite the approximately 2-fold increase in AUC4-OH-CPA, suggesting that other PB-inducible activities, such as aldehyde dehydrogenase, may counter this increase through enhanced deactivation of the 4-hydroxy metabolite. Together, these studies demonstrate that the P-4503A inhibitor TAO can be used to effectively modulate CPA metabolism and pharmacokinetics in vivo in a manner that decreases the formation of toxic metabolites that do not contribute to antitumor activity.  (+info)