The developmental basis for allometry in insects. (1/1105)

Within all species of animals, the size of each organ bears a specific relationship to overall body size. These patterns of organ size relative to total body size are called static allometry and have enchanted biologists for centuries, yet the mechanisms generating these patterns have attracted little experimental study. We review recent and older work on holometabolous insect development that sheds light on these mechanisms. In insects, static allometry can be divided into at least two processes: (1) the autonomous specification of organ identity, perhaps including the approximate size of the organ, and (2) the determination of the final size of organs based on total body size. We present three models to explain the second process: (1) all organs autonomously absorb nutrients and grow at organ-specific rates, (2) a centralized system measures a close correlate of total body size and distributes this information to all organs, and (3) autonomous organ growth is combined with feedback between growing organs to modulate final sizes. We provide evidence supporting models 2 and 3 and also suggest that hormones are the messengers of size information. Advances in our understanding of the mechanisms of allometry will come through the integrated study of whole tissues using techniques from development, genetics, endocrinology and population biology.  (+info)

Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. (2/1105)

We demonstrate that the ligand pocket of a lipocalin from Pieris brassicae, the bilin-binding protein (BBP), can be reshaped by combinatorial protein design such that it recognizes fluorescein, an established immunological hapten. For this purpose 16 residues at the center of the binding site, which is formed by four loops on top of an eight-stranded beta-barrel, were subjected to random mutagenesis. Fluorescein-binding BBP variants were then selected from the mutant library by bacterial phage display. Three variants were identified that complex fluorescein with high affinity, exhibiting dissociation constants as low as 35.2 nM. Notably, one of these variants effects almost complete quenching of the ligand fluorescence, similarly as an anti-fluorescein antibody. Detailed ligand-binding studies and site-directed mutagenesis experiments indicated (i) that the molecular recognition of fluorescein is specific and (ii) that charged residues at the center of the pocket are responsible for tight complex formation. Sequence comparison of the BBP variants directed against fluorescein with the wild-type protein and with further variants that were selected against several other ligands revealed that all of the randomized amino acid positions are variable. Hence, a lipocalin can be used for generating molecular pockets with a diversity of shapes. We term this class of engineered proteins "anticalins." Their one-domain scaffold makes them a promising alternative to antibodies to create a stable receptor protein for a ligand of choice.  (+info)

Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body. (3/1105)

We have previously shown that stereospecific hydrolysis of stored triacylglycerol by a phosphorylatable triacylglycerol-lipase is the pathway for the adipokinetic hormone-stimulated synthesis of sn -1, 2-diacylglycerol in insect fat body. The current series of experiments were designed to determine whether cAMP and/or calcium are involved in the signal transduction pathway for adipokinetic hormone in the fat body. After adipokinetic hormone treatment, cAMP-dependent protein kinase activity in the fat body rapidly increased and reached a maximum after 20 min, suggesting that adipokinetic hormone causes an increase in cAMP. Forskolin (0.1 micrometer), an adenylate cyclase activator, induced up to a 97% increase in the secretion of diacylglycerol from the fat body. 8Br-cAMP (a membrane-permeable analog of cAMP) produced a 40% increase in the hemolymph diacylglycerol content. Treatment with cholera toxin, which also stimulates adenylate cyclase, induced up to a 145% increase in diacylglycerol production. Chelation of extracellular calcium produced up to 70% inhibition of the adipokinetic hormone-dependent mobilization of lipids. Calcium-mobilizing agents, ionomycin and thapsigargin, greatly stimulated DG production by up to 130%. Finally, adipokinetic hormone caused a rapid increase of calcium uptake into the fat body. Our findings indicate that the action of adipokinetic hormone in mobilizing lipids from the insect fat body involves both cAMP and calcium as intracellular messengers.  (+info)

Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases. (4/1105)

In Drosophila, members of the Frizzled family of tissue-polarity genes encode proteins that appear to function as cell-surface receptors for Wnts. The Frizzled genes belong to the seven transmembrane class of receptors (7TMR) and have on their extracellular region a cysteine-rich domain that has been implicated as the Wnt binding domain. This region has a characteristic spacing of ten cysteines, which has also been identified in FrzB (a secreted antagonist of Wnt signaling) and Smoothened (another 7TMR, which is involved in the hedgehog signalling pathway). We have identified, using BLAST, sequence similarity between the cysteine-rich domain of Frizzled and several receptor tyrosine kinases, which have roles in development. These include the muscle-specific receptor tyrosine kinase (MuSK), the neuronal specific kinase (NSK2), and ROR1 and ROR2. At present, the ligands for these developmental tyrosine kinases are unknown. Our results suggest that Wnt-like ligands may bind to these developmental tyrosine kinases  (+info)

Hox genes differentially regulate Serrate to generate segment-specific structures. (5/1105)

Diversification of Drosophila segmental morphologies requires the functions of Hox transcription factors. However, there is little information describing pathways through which Hox activities effect the discrete cellular changes that diversify segmental architecture. We have identified the Drosophila signaling protein Serrate as the product of a Hox downstream gene that acts in many segments as a component of such pathways. In the embryonic epidermis, Serrate is required for morphogenesis of normal abdominal denticle belts and maxillary mouth hooks, both Hox-dependent structures. The Hox genes Ultrabithorax and abdominal-A are required to activate an early stripe of Serrate transcription in abdominal segments. In the abdominal epidermis, Serrate promotes denticle diversity by precisely localizing a single cell stripe of rhomboid expression, which generates a source of EGF signal that is not produced in thoracic epidermis. In the head, Deformed is required to activate Serrate transcription in the maxillary segment, where Serrate is required for normal mouth hook morphogenesis. However, Serrate does not require rhomboid function in the maxillary segment, suggesting that the Hox-Serrate pathway to segment-specific morphogenesis can be linked to more than one downstream function.  (+info)

Locust corpora cardiaca contain an inactive adipokinetic hormone. (6/1105)

A neuropeptide from the migratory locust, Locusta migratoria, has been identified as a novel member of the family of adipokinetic hormones (AKHs). The peptide is probably synthesised in the brain because it is the first AKH found in the storage lobe, whilst the three 'classic' Locusta AKHs are present in the glandular lobe of the corpora cardiaca. In locusts, the peptide has no biological activity usually associated with AKHs. There is only 36-56% sequence identity with the three Lom-AKHs, but 78% identity with the Drosophila melanogaster AKH, Drm-HrTH. The new peptide is active in the American cockroach, Periplaneta americana, and was provisionally named 'L. migratoria hypertrehalosaemic hormone', Lom-HrTH; its biological role in locusts remains to be established. The high degree of identity with Drm-HrTH suggests that Lom-HrTH is an ancient molecule.  (+info)

Absence of interdomain contacts in the crystal structure of the RNA recognition motifs of Sex-lethal. (7/1105)

By binding specific RNA transcripts, the Sex-lethal protein (SXL) governs sexual differentiation and dosage compensation in Drosophila melanogaster. To investigate the basis for RNA binding specificity, we determined the crystal structure of the tandem RNA recognition motifs (RRMs) of SXL. Both RRMs adopt the canonical RRM fold, and the 10-residue, interdomain linker shows significant disorder. In contrast to the previously determined structure of the two-RRM fragment of heterogeneous nuclear ribonucleoprotein Al, SXL displays no interdomain contacts between RRMs. These results suggest that the SXL RRMs are flexibly tethered in solution, and RNA binding restricts the orientation of RRMs. Therefore, the observed specificity for single-stranded, U-rich sequences does not arise from a predefined, rigid architecture of the isolated SXL RRMs.  (+info)

Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. (8/1105)

Nucleotide sequence variation at the Acp29AB gene region has been surveyed in Drosophila melanogaster from Spain (12 lines), Ivory Coast (14 lines), and Malawi (13 lines) and in one line of D. simulans. The approximately 1.7-kb region studied encompasses the Acp29AB gene that codes for a male accessory gland protein and its flanking regions. Seventy-seven nucleotide and 8 length polymorphisms were detected. Nonsynonymous polymorphism was an order of magnitude lower than synonymous polymorphism, but still high relative to other non-sex-related genes. In D. melanogaster variation at this region revealed no major genetic differentiation between East and West African populations, while differentiation was highly significant between the European and the two African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites showed an excess of fixed nonsynonymous changes, which indicates that the evolution of the Acp29AB protein has been driven by directional selection at least after the split of the D. melanogaster and D. simulans lineages. The pattern of variation in extant populations of D. melanogaster favors a scenario where the fixation of advantageous replacement substitutions occurred in the early stages of speciation and balancing selection is maintaining variation in this species.  (+info)