Functional interactions between herpesvirus oncoprotein MEQ and cell cycle regulator CDK2. (1/248)

Marek's disease virus, an avian alphaherpesvirus, has been used as an excellent model to study herpesvirus oncogenesis. One of its potential oncogenes, MEQ, has been demonstrated to transform a rodent fibroblast cell line, Rat-2, in vitro by inducing morphological transformation and anchorage- and serum-independent growth and by protecting cells from apoptosis induced by tumor necrosis factor alpha, C2-ceramide, UV irradiation, or serum deprivation. In this report, we show that there is a cell cycle-dependent colocalization of MEQ protein and cyclin-dependent kinase 2 (CDK2) in coiled bodies and the nucleolar periphery during the G1/S boundary and early S phase. To our knowledge, this is the first demonstration that CDK2 is found to localize to coiled bodies. Such an in vivo association and possibly subsequent phosphorylation may result in the cytoplasmic translocation of MEQ protein. Indeed, MEQ is expressed in both the nucleus and the cytoplasm during the G1/S boundary and early S phase. In addition, we were able to show in vitro phosphorylation of MEQ by CDKs. We have mapped the CDK phosphorylation site of MEQ to be serine 42, a residue in the proximity of the bZIP domain. An indirect-immunofluorescence study of the MEQ S42D mutant, in which the CDK phosphorylation site was mutated to a charged residue, reveals more prominent cytoplasmic localization. This lends further support to the notion that the translocation of MEQ is regulated by phosphorylation. Furthermore, phosphorylation of MEQ by CDKs drastically reduces the DNA binding activity of MEQ, which may in part account for the lack of retention of MEQ oncoprotein in the nucleus. Interestingly, the localization of CDK2 in coiled bodies and the nucleolar periphery is observed only in MEQ-transformed Rat-2 cells, implicating MEQ in modifying the subcellular localization of CDK2. Taken together, our data suggest that there is a novel reciprocal modulation between the herpesvirus oncoprotein MEQ and CDK2.  (+info)

Protection of chickens against very virulent infectious bursal disease virus (IBDV) and Marek's disease virus (MDV) with a recombinant MDV expressing IBDV VP2. (2/248)

To develop a herpes virus vaccine that can induce immunity for an extended period, a recombinant Marek's disease (MD) virus (MDV) CVI-988 strain expressing infectious bursal disease virus (IBDV) host-protective antigen VP2 at the US2 site (rMDV) was developed under the control of an SV40 early promoter. Chickens vaccinated with the rMDV showed no clinical signs and no mortality and 55% of the chickens were considered protected histopathologically after challenge with very virulent IBDV (vvIBDV), whereas all of the chickens vaccinated with the conventional IBDV vaccine showed no clinical signs and were protected. Chickens vaccinated with the CVI-988 or chickens in the challenge control showed severe clinical signs and high mortality (70-75%) and none of them were protected. Also, the rMDV conferred full protection to chickens against vvMDV just as the CVI-988 strain did, whereas 90% of the challenge control chickens died of MD. Antibody levels against IBDV and MDV following the vaccination increased continuously for at least 10 weeks. No histopathological lesions in the rMDV-vaccinated chickens and no contact transmission of the rMDV to their penmates were confirmed. These results demonstrate that an effective and safe recombinant herpesvirus-based IBD vaccine could be constructed by expressing the VP2 antigen at the US2 site of the CVI-988 vaccine strain.  (+info)

Antisense oligonucleotide complementary to the BamHI-H gene family of Marek's disease virus induced growth arrest of MDCC-MSB1 cells in the S-phase. (3/248)

DNA synthesis was effectively inhibited by antisense oligonucleotide A1 complementary to the BamHI-H gene family in Marek's disease virus (MDV)-derived lymphoblastoid MDCC-MSB1 cells. When a cell cycle distribution of a total cell population was analyzed by flow cytometry, the proportion of S-phase cells increased in the cell populations by treatment with oligonucleotide A1. Approximately 60-70% of the cells appeared in the S phase for 24 and 36 hr of incubation in the presence of oligonucleotide A1 (20-30% in the untreated control cells). The inhibition of cell cycle progression by treatment with oligonucleotide A1 was reversible. When the cells were treated with 5 microM aphidicolin for 12 hr, a similar pattern of cell cycle distribution was observed to that obtained after treatment with oligonucleotide A1. Aphidicolin is an inhibitor of cellular DNA polymerase alpha, and it halts progression of the cell cycle at the G1/S border or early S phase. When the cells were treated with aphidicolin for 12 hr and subsequently incubated with oligonucleotide A1, no significant difference was observed in the cycle phase distribution of cells in the presence and absence of oligonucleotide A1. In contrast, when the cells were treated with oligonucleotide A1 for 12 hr and subsequently incubated with aphidicolin, the cell cycle did not progress from the G1/S border or early S phase to the next phase.  (+info)

Identification and structure of the Marek's disease virus serotype 2 glycoprotein M gene: comparison with glycoprotein M genes of Herpesviridae family. (4/248)

We determined the nucleotide sequence of a portion of BamHI-C fragment of Marek's disease virus serotype 2 (MDV2) strain HPRS24 which was suspected to contain the homologue of the herpes simplex virus type 1 (HSV-1) gene UL10, encoding glycoprotein M (gM). An open reading frame whose translation product exhibited significant similarities to HSV-1 gM protein and respective proteins of other herpesviruses of 37.5% and 45.5% to 31.8%, respectively, was identified. A number of distinct transcriptional consensus sequences were found upstream of the first putative start codon of MDV2 UL10 protein. In transcriptional analysis, the gene was transcribed into an 1.5 kb RNA. The primary translation product comprises 424 amino acids with a predicted molecular weight of 46.9 kDa. The predicted MDV2 UL10 protein contains eight hydrophobic domains with sufficient length and hydrophobicity to span the lipid bilayer conserved in the genomes of all herpesviruses which have been sequenced so far. In the region located between the first and second hydrophobic domains, two potential N-linked glycosylation sites were presented. Interestingly, highly charged residues were abundantly possessed in the carboxy-terminal part of the MDV2 UL10 protein. By comparison of the amino acid sequence of the MDV2 UL10 gene with the homologues from other herpesviruses, the data might contribute for further evidence of the evolution of herpesviruses from a common progenitor and an ancient example of MDV2 belonging to the Alphaherpesvirinae subfamily. In addition, the existence of corresponding genes in human, mammalian, and avian herpesvirus genomes, suggests indirectly an important role for gM in the natural life cycle of the virus.  (+info)

Electron microscopic and immunohistochemical localization of Marek's disease (MD) herpesvirus particles in MD skin lymphomas. (5/248)

Skin lymphomas induced in 11 specific-pathogen-free chickens by inoculation at 1 day of age with Marek's disease virus (MDV) were biopsied weekly and examined by electron microscopy and immunohistochemistry. In the sequentially biopsied lymphomas, immature MDV particles (abortive replication) were found only in the nuclei of necrotic lymphoblasts within necrotizing neoplasms. The necrotizing lymphomas were observed in two of the 11 experimental birds and were associated with prominent vascular endothelial cell injury, including fibrinoid necrosis of blood vessels. Nonnecrotizing lymphomas biopsied sequentially from the 11 experimental birds did not contain virus particles of any kind in the lymphoblasts and had no distinct vascular lesions. Immunohistochemically, MDV early antigen (pp38), but not late antigens (glycoproteins B and C), was detected only in the necrotizing lymphomas. These findings indicate that abortive MDV replication mainly occurred in necrotic lymphoblasts, which might have been induced by ischemia.  (+info)

Identification and DNA sequence analysis of the Marek's disease virus serotype 2 genes homologous to the herpes simplex virus type 1 UL20 and UL21. (6/248)

We determined 3,135 bp of the nucleotide sequence located in an 8.5 kb EcoRI-E fragment in the unique long (UL) genome region of Marek's disease virus serotype 2 (MDV2), and identified UL20 and UL21 homologous genes of herpes simplex virus type 1 (HSV-1). The UL20 and UL21 homologous genes of MDV2 are arranged colinearly with the prototype sequence of HSV-1. In addition, an open reading frame (MDV2 ORF 273), which has been identified within the UL21 homologous gene of MDV2, has no apparent relation to any other known herpesvirus genes. Northern blot analysis and reverse transcriptase polymerase chain reaction confirmed the existance of RNA transcripts related to the UL20 and ORF 273 genes in MDV2-infected cells, except no transcript related to the UL21 gene being detected. The putative protein product of the MDV2 UL20 gene had a relatively low homology but that of the MDV2 UL21 gene had a moderate homology among herpesviruses. Further, the possible functions and features of the predicted proteins encoded within the sequenced region are discussed.  (+info)

Identification and sequence analysis of the Marek's disease virus serotype 2 gene homologous to the herpes simplex virus type 1 UL52 protein. (7/248)

The gene of Marek's disease virus serotype 2 (MDV2) homologous to the UL52 gene of herpes simplex virus type 1 (HSV-1) was identified and characterized. The MDV2 UL52 homologous gene encodes 1,071 amino acids with a molecular weight of 118.7 kDa, which includes putative metal-binding site and overlapping region with the UL53 homologous gene. Although a putative polyadenylation signal sequence was found in the downstream of the MDV2 UL52 gene, a MDV2 UL52 DNA probe reacted only with the polycistronic 6.3 kb transcript, representing the UL52 and the downstream genes of UL53 and UL54. Transcriptional pattern of this region of MDV2 was somewhat different from corresponding regions of HSV-1 and infectious laryngotracheitis virus.  (+info)

Identification and sequence analysis of the Marek's disease virus serotype 2 homologous genes of the herpes simplex virus type 1 UL25, UL26 and UL26.5 genes. (8/248)

We identified and determined the nucleotide sequence of Marek's disease virus serotype 2 (MDV2) UL25, UL26 and UL26.5 homologous genes of herpes simplex virus type 1 (HSV-1). The UL25, UL26 and UL26.5 genes of HSV-1 encode virion proteins (UL25 and UL26.5) and serine protease (UL26). The deduced amino acid sequences of the three proteins show a high degree of homology to counterparts of HSV-1. By northern blot analyses we found that four transcripts whose sizes are 4.9, 3.9, 2.0 and 1.3 kb are transcribed from the domains of MDV2 genome containing the three genes. This is the first report dealing with UL25, UL26 and UL26.5 homologues of HSV-1 in MDV serotypes.  (+info)