Human and Escherichia coli beta-glucuronidase hydrolysis of glucuronide conjugates of benzidine and 4-aminobiphenyl, and their hydroxy metabolites. (41/2731)

Individuals exposed to carcinogenic aromatic amines excrete arylamine N- and O-glucuronide metabolites. This study assessed the susceptibility of selected glucuronides to hydrolysis by human and Escherichia coli beta-glucuronidase. N- or O-glucuronides were prepared with the following aglycones: benzidine, N-acetylbenzidine, N'-hydroxy-N-acetylbenzidine, N-hydroxy-N-acetylbenzidine, N-hydroxy-N,N'-diacetylbenzidine, 3-hydroxy-N,N'-diacetylbenzidine, 3-hydroxy-benzidine, 4-aminobiphenyl, N-hydroxy-4-aminobiphenyl, and N-hydroxy-N-acetyl-4-aminobiphenyl. The (3)H- and (14)C-labeled glucuronides were prepared with human or rat liver microsomes using UDP-glucuronic acid as cosubstrate. Each of the 10 glucuronides (6-12 microM) was incubated at pH 5.5 or 7.0 with either human recombinant (pure) or E. coli (commercial preparation) beta-glucuronidase for 30 min at 37 degrees C. Hydrolysis was measured by HPLC. Reaction conditions were optimized, using the O-glucuronide of N-hydroxy-N,N'-diacetylbenzidine. Both enzymes preferentially hydrolyzed O-glucuronides over N-glucuronides and distinguished between structural isomers. With E. coli beta-glucuronidase at pH 7.0, selectivity was demonstrated by the complete hydrolysis of N-hydroxy-N-acetyl-4-aminobiphenyl O-glucuronide in the presence of N-acetylbenzidine N-glucuronide, which was not hydrolyzed. Metabolism by both enzymes was completely inhibited by the specific beta-glucuronidase inhibitor saccharic acid-1,4-lactone (0.5 mM). The concentration of human beta-glucuronidase necessary to achieve significant hydrolysis of glucuronides was substantially more than the amount of enzyme reported previously to be present in urine under either normal or pathological conditions. The bacterial enzyme may hydrolyze O-glucuronides, but not N-glucuronides, in urine at neutral pH. Thus, the nonenzymatic hydrolysis of N-glucuronides by acidic urine is likely a more important source of free amine than enzymatic hydrolysis.  (+info)

Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. (42/2731)

Using mini-Tn5CmR::gusA, a transposon that allows transcriptional fusions to a promoterless beta-glucuronidase gene, a mutant of Erwinia carotovora subsp. carotovora SCC3193 deficient in extracellular protease production and soft-rot pathogenicity in plants was isolated. The mutant, designated SCC6004, produced normal levels of pectate lyase, polygalacturonase and cellulase. The region of the transposon insertion was partially sequenced to permit the design of specific oligonucleotide primers to amplify a 2.7 kb Clal fragment from E. carotovora subsp. carotovora SCC3193. The DNA sequence of the cloned fragment contained two complete and one partial ORFs. One of the complete ORFs (ORF1) was designated prtW and encodes a secreted protease. The deduced amino acid sequence of PrtW showed a high overall identify of 60-66% to the previously described Erwinia chrysanthemi proteases, but no homology to other proteases isolated from different E. carotovora strains. Downstream from ORF1, a further complete ORF (ORF2) and a partial ORF (ORF3) were found, with deduced peptide sequences that have significant similarity to the Inh and PrtD proteins, respectively, from E. chrysanthemi, which are involved in protease secretion. Gene fusion to the gusA reporter was employed to charaterize the regulation of prtW. The prtW gene was found to be strongly induced in the presence of plant extracts. The mutant exhibited reduced virulence, suggesting that PrtW enhances the ability of strain SCC3193 to macerate plant tissue.  (+info)

Behavior and therapeutic efficacy of beta-glucuronidase-positive mononuclear phagocytes in a murine model of mucopolysaccharidosis type VII. (43/2731)

Bone marrow transplantation (BMT) is relatively effective for the treatment of lysosomal storage diseases. To better understand the contribution of specific hematopoietic lineages to the efficacy of BMT, we transplanted beta-glucuronidase-positive mononuclear phagocytes derived from either the peritoneum or from bone marrow in vitro into syngeneic recipients with mucopolysaccharidosis type VII (MPS VII). Cell surface marking studies indicate that the bone marrow-derived cells are less mature than the peritoneal macrophages. However, both cell types retain the ability to home to tissues rich in cells of the reticuloendothelial system after intravenous injection into MPS VII mice. The half-life of both types of donor macrophages is approximately 7 days, and some cells persist for at least 30 days. In several tissues, therapeutic levels of beta-glucuronidase are present, and histopathologic analysis demonstrates that lysosomal storage is dramatically reduced in the liver and spleen. Macrophages intravenously injected into newborn MPS VII mice localize to the same tissues as adult mice but are also observed in the meninges and parenchyma of the brain. These data suggest that macrophages play a significant role in the therapeutic efficacy of BMT for lysosomal storage diseases and may have implications for treatments such as gene therapy.  (+info)

A 69 bp fragment in the pyrroline-5-carboxylate reductase promoter of Arabidopsis thaliana activates minimal CaMV 35S promoter in a tissue-specific manner. (44/2731)

The Arabidopsis thaliana gene that encodes pyrroline-5-carboxylate reductase (At-P5R), the last enzyme in proline biosynthesis in A. thaliana, is developmentally regulated and is highly expressed in cells that divide rapidly or undergo changes in osmotic potential. A 69 bp region (P69; -120 to -51) has previously been identified in a 5' deletion analysis of the At-P5R promoter to be necessary for the basal expression. Here, the essential role of P69 for tissue-specific expression of At-P5R is demonstrated by loss- and gain-of-function experiments.  (+info)

Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. (45/2731)

Cryptococcus neoformans is a pathogenic fungus which most commonly affects the central nervous system and causes fatal meningoencephalitis primarily in patients with AIDS. This fungus produces a thick extracellular polysaccharide capsule which is well recognized as a virulence factor. Here, we describe the isolation and characterization of a novel gene, CAP10, which is required for capsule formation. Complementation of the acapsular cap10 mutant produced an encapsulated strain and the deletion of CAP10 from a wild strain resulted in an acapsular phenotype. The molecular mass of the hemagglutinin epitope-tagged Cap10p is about 73 kDa, which is similar to the size predicted from sequence analysis. When CAP10 was fused with a hybrid green fluorescent protein construct, the fluorescence signals appeared as patches in the cytoplasm. Using a reporter gene construct, we found that CAP10 was expressed at high levels in late-stationary-phase cells. In addition, we found that the expression levels of CAP10 are modulated by the transcriptional factor STE12alpha. Deletion of STE12alpha downregulated the expression levels of CAP10 while overexpression of STE12alpha upregulated the expression levels of CAP10. Animal model studies indicate that deletion of the CAP10 gene results in the loss of virulence, and complementation of the acapsular phenotype of cap10 restores virulence. Thus, CAP10 is required for capsule formation and virulence.  (+info)

Regulation of closterovirus gene expression examined by insertion of a self-processing reporter and by northern hybridization. (46/2731)

A reporter open reading frame (ORF) coding for a fusion of bacterial beta-glucuronidase (GUS) with a proteinase domain (Pro) derived from tobacco etch potyvirus was utilized for tagging individual genes of beet yellows closterovirus (BYV). Insertion of this reporter ORF between the first and second codons of the BYV ORFs encoding the HSP70 homolog (HSP70h), a major capsid protein (CP), and a 20-kDa protein (p20) resulted in the expression of the processed GUS-Pro reporter from corresponding subgenomic RNAs. The high sensitivity of GUS assays permitted temporal analysis of reporter accumulation, revealing early expression from the HSP70h promoter, followed by the CP promoter and later the p20 promoter. The kinetics of transcription of the remaining BYV genes encoding a 64-kDa protein (p64), a minor capsid protein (CPm), and a 21-kDa protein (p21) were examined via Northern blot analysis. Taken together, the data indicated that the temporal regulation of BYV gene expression includes early (HSP70h, CPm, CP, and p21 promoters) and late (p64 and p20 promoters) phases. It was also demonstrated that the deletion of six viral genes that are nonessential for RNA amplification resulted in a dramatic increase in the level of transcription from one of the two remaining subgenomic promoters. Comparison with other positive-strand RNA viruses producing multiple subgenomic RNAs showed the uniqueness of the pattern of closterovirus transcriptional regulation.  (+info)

Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. (47/2731)

Human platelet heparanase has been purified to homogeneity and shown to consist of two, non-covalently associated polypeptide chains of molecular masses 50 and 8 kDa. Protein sequencing provided the basis for determination of the full-length cDNA for this novel protein. Based upon this information and results from protein analysis and mass spectrometry, we propose a scheme to define the structural organization of heparanase in relation to its precursor forms, proheparanase and pre-proheparanase. The 8- and 50-kDa chains which make up the active enzyme reside, respectively, at the NH(2)- and COOH-terminal regions of the inactive precursor, proheparanase. The heparanase heterodimer is produced by excision and loss of an internal linking segment. This paper is the first to suggest that human heparanase is a two-chain enzyme.  (+info)

Establishment and characterization of cytopathogenic and noncytopathogenic pestivirus replicons. (48/2731)

Defective interfering particles (DIs) of bovine viral diarrhea virus (BVDV) have been identified and shown to be cytopathogenic (cp) in the presence of noncytopathogenic (noncp) helper virus. Moreover, a subgenomic (sg) RNA corresponding in its genome structure to one of those BVDV DIs (DI9) was replication competent in the absence of helper virus. We report here that an sg BVDV replicon which encodes from the viral proteins only the first three amino acids of the autoprotease N(pro) in addition to nonstructural (NS) proteins NS3 to NS5B replicates autonomously and also induces lysis of its host cells. This demonstrates that the presence of a helper virus is not required for the lysis of the host cell. On the basis of two infectious BVDV cDNA clones, namely, BVDV CP7 (cp) and CP7ins- (noncp), bicistronic replicons expressing proteins NS2-3 to NS5B were established. These replicons express, in addition to the viral proteins, the reporter gene encoding beta-glucuronidase; the release of this enzyme from transfected culture cells was used to monitor cell lysis. Applying these tools, we were able to show that the replicon derived from CP7ins- does not induce cell lysis. Accordingly, neither N(pro) nor any of the structural proteins are necessary to maintain the noncp phenotype. Furthermore, these sg RNAs represent the first pair of cp and noncp replicons which mimic complete BVDV CP7 and CP7ins- with respect to cytopathogenicity. These replicons will facilitate future studies aimed at the determination of the molecular basis for the cytopathogenicity of BVDV.  (+info)