The role of latitude in mobilism debates. (65/257)

In the early 1920s, the continental displacement theory of Wegener, latitude studies of Koppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves.  (+info)

The quality of the fossil record of Mesozoic birds. (66/257)

The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.  (+info)

Remote analysis of biological invasion and biogeochemical change. (67/257)

We used airborne imaging spectroscopy and photon transport modeling to determine how biological invasion altered the chemistry of forest canopies across a Hawaiian montane rain forest landscape. The nitrogen-fixing tree Myrica faya doubled canopy nitrogen concentrations and water content as it replaced native forest, whereas the understory herb Hedychium gardnerianum reduced nitrogen concentrations in the forest overstory and substantially increased aboveground water content. This remote sensing approach indicates the geographic extent, intensity, and biogeochemical impacts of two distinct invaders; its wider application could enhance the role of remote sensing in ecosystem analysis and management.  (+info)

On the possible leakage of ET-RR1 liquid waste tank: hydrological and migration modes studies. (68/257)

The first Egyptian (ET-RR1) research reactor has been in operation since 1961 at the Egyptian Atomic Energy Authority (EAEA) Inshas site. Therefore, at present, it faces a serious problem due to aging equipment, especially those directly in contact with the environment such as the underground settling tanks of nuclear and radioactive waste. The possible leakage of radionuclides from these aging tanks and their migration to the aquifer was studied using instantaneous release. This study was done based on the geological and hydrological characteristics of the site, which were obtained from the hydrogeological data of 25 wells previously drilled at the site of the reactor[1]. These data were used to calculate the trend of water levels, hydraulic gradient, and formulation of water table maps from 1993-2002. This information was utilized to determine water velocity in the unsaturated zone. Radionuclides released from the settling tank to the aquifer were screened according to the radionuclides that have high migration ability and high activity. The amount of fission and activation products of the burned fuels that contaminated the water content of the reactor pool were considered as 10% of the original spent fuel. The radionuclides considered in this case were H-3, Sr-90, Zr-93, Tc-99, Cd-113, Cs-135, Cs-137, Sm-151, Pu-238, Pu-240, Pu-241, and Am-241. The instantaneous release was analyzed by theoretical calculations, taking into consideration the migration mechanism of the various radionuclides through the soil space between the tank bottom and the aquifer. The migration mechanism through the unsaturated zone was considered depending on soil type, thickness of the unsaturated zone, water velocity, and other factors that are specific for each radionuclide, namely retardation factor, which is the function of the specific distribution coefficient of each radionuclide. This was considered collectively as delay time. Meanwhile, the mechanism of radionuclide migration during their passage in the water body of the aquifer was the main focus of this study. The degree of water pollution in the aquifer at a point of contact with the main water body of Ismailia Canal 1000 m from the reactor site was assessed for the instantaneous release by comparing the results obtained with the regulations of the standard limit of radionuclides in drinking water.  (+info)

Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. (69/257)

Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.  (+info)

A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. (70/257)

Ediacara fossils are among the oldest known macroscopic and complex life forms. Their bodyplan, ecology, and phylogenetic affinities have been controversial. On the basis of taphonomic observations, Seilacher [Seilacher, A. (1989) Lethaia 22, 229-239] proposed that the core elements of the Ediacara biota, the vendobionts, were constructed with serially or fractally arranged quilts or tube-like units. However, anatomy of quilt walls has been rarely reported, because most Ediacara fossils are preserved as casts and molds in siliciclastic rocks with inadequate morphological resolution. Here, we report an Ediacara form, uniquely preserved in situ and in three dimensions with its organic walls cast by early diagenetic calcite, from bituminous limestone of the 551- to 542-mega-annum Dengying Formation of South China. Despite diagenetic tampering, serial sections show that the Dengying form consists of biserially arranged, tube-like quilts, each with two vertical side walls, a floor, a roof, and an open distal end. Three-dimensional morphological complexity of the Dengying form excludes a microbial interpretation but is broadly consistent with vendobionts. Unlike classic frondose vendobionts sensu Seilacher, however, the Dengying form probably lacked a smooth margin and had distally open quilts. It probably lived procumbently at or near the water-sediment interface and shows evidence for substrate utilization. Despite its uncertain phylogeny, ontogeny, and functional biology, the Dengying form adds to Ediacaran biodiversity, places key constraints on the ecology and extinction of Ediacara organisms, and points to the need to explore an alternative taphonomic window for Ediacara biology.  (+info)

A silicified bird from Quaternary hot spring deposits. (71/257)

The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met.  (+info)

The Late Triassic pseudosuchian Revueltosaurus callenderi and its implications for the diversity of early ornithischian dinosaurs. (72/257)

A new discovery of skeletons of Revueltosaurus callenderi from the Upper Triassic Chinle Formation of Petrified Forest National Park, Arizona clearly shows that Revueltosaurus is not an ornithischian dinosaur as previously supposed. Features such as the presence of a postfrontal, crocodile-normal ankle and paramedian osteoderms with anterior bars place R. callenderi within the Pseudosuchia, closer to crocodylomorphs than to dinosaurs. Therefore, dental characters previously used to place Revueltosaurus within the Ornithischia evolved convergently among other archosaur taxa, and cannot be used to diagnose ornithischian dinosaur teeth. As a result, all other putative North American Late Triassic ornithischians, which are all based exclusively on teeth, are cast into doubt. The only reasonably well-confirmed Late Triassic ornithischians worldwide are Pisanosaurus mertii and an unnamed heterodontosaurid from Argentina. This considerably changes the understanding of early dinosaur diversity, distribution and evolution in the Late Triassic.  (+info)