A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. (65/4169)

A small conserved open reading frame in the plastid genome, ycf9, encodes a putative membrane protein of 62 amino acids. To determine the function of this reading frame we have constructed a knockout allele for targeted disruption of ycf9. This allele was introduced into the tobacco plastid genome by biolistic transformation to replace the wild-type ycf9 allele. Homoplasmic ycf9 knockout plants displayed no phenotype under normal growth conditions. However, under low light conditions, their growth rate was significantly reduced as compared with the wild-type, due to a lowered efficiency of the light reaction of photosynthesis. We show that this phenotype is caused by the deficiency in a pigment-protein complex of the light-harvesting antenna of photosystem II and hence by a reduced efficiency of photon capture when light availability is limiting. Our results indicate that, in contrast to the current view, light-harvesting complexes do not only consist of the classical pigment-binding proteins, but may contain small structural subunits in addition. These subunits appear to be crucial architectural factors for the assembly and/or maintenance of stable light-harvesting complexes.  (+info)

SINE retroposons can be used in vivo as nucleation centers for de novo methylation. (66/4169)

SINEs (short interspersed elements) are an abundant class of transposable elements found in a wide variety of eukaryotes. Using the genomic sequencing technique, we observed that plant S1 SINE retroposons mainly integrate in hypomethylated DNA regions and are targeted by methylases. Methylation can then spread from the SINE into flanking genomic sequences, creating distal epigenetic modifications. This methylation spreading is vectorially directed upstream or downstream of the S1 element, suggesting that it could be facilitated when a potentially good methylatable sequence is single stranded during DNA replication, particularly when located on the lagging strand. Replication of a short methylated DNA region could thus lead to the de novo methylation of upstream or downstream adjacent sequences.  (+info)

Phylogeny and divergence times in Pinaceae: evidence from three genomes. (67/4169)

In Pinaceae, the chloroplast, mitochondrial, and nuclear genomes are paternally, maternally, and biparentally inherited, respectively. Examining congruence and incongruence of gene phylogenies among the three genomes should provide insights into phylogenetic relationships within the family. Here we studied intergeneric relationships of Pinaceae using sequences of the chloroplast matK gene, the mitochondrial nad5 gene, and the low-copy nuclear gene 4CL. The 4CL gene may exist as a single copy in some species of Pinaceae, but it constitutes a small gene family with two or three members in others. Duplication and deletion of the 4CL gene occurred at a tempo such that paralogous loci are maintained within but not between genera. Exons of the 4CL gene have diverged approximately twice as fast as the matK gene and five times more rapidly than the nad5 gene. The partition-homogeneity test indicates that the three data sets are homogeneous. A combined analysis of the three gene sequences generated a well-resolved and strongly supported phylogeny. The combined phylogeny, which is topologically congruent with the three individual gene trees based on the Templeton test, is likely to represent the organismal phylogeny of Pinaceae. This phylogeny agrees to a certain extent with previous phylogenetic hypotheses based on morphological, anatomical, and immunological data. Disagreement between the previous hypotheses and the three-genome phylogeny suggests that morphology of both vegetative and reproductive organs has undergone convergent evolution within the pine family. The strongly supported monophyly of Nothotsuga longibracteata, Tsuga mertensiana, and Tsuga canadensis on all three gene phylogenies provides evidence against previous hypotheses of intergeneric hybrid origins of N. longibracteata and T. mertensiana. Divergence times of the genera were estimated based on sequence divergence of the matK gene, and they correspond well with the fossil record.  (+info)

Large accumulation of mRNA and DNA point modifications in a plant senescent tissue. (68/4169)

Although nucleic acids are the paradigm of genetic information conservation, they are inherently unstable molecules that suffer intrinsic and environmental damage. Oxidative stress has been related to senescence and aging and, recently, it has been shown that mutations accumulate at high frequency in mitochondrial DNA with age. We investigated RNA and DNA modifications in cork, a senescent plant tissue under high endogenous oxidative stress conditions. When compared to normally growing young tissue, cork revealed an unexpected high frequency of point modifications in both cDNA (Pn = 1/1784) and nuclear DNA (Pn = 1/1520). Cork should be viewed as a mosaic of genetically heterogeneous cells. This has biological implications: it supports somatic mutation models for aging and challenges 'single cDNA clone' as descriptor for the molecular genetics of senescent tissues.  (+info)

The compositional organization and the expression of the Arabidopsis genome. (69/4169)

The base composition patterns of genes, coding sequences and gene expression levels were analyzed in the available long sequences (contigs) of Arabidopsis. Chromosome 5 was analyzed in detail and all chromosomes for which sequence data are now available show essentially the same large-scale compositional properties. Guanine+cytosine levels of genes and of their coding regions, as well as gene densities and expression levels, all show a marked tendency to be higher in the distal regions of Arabidopsis chromosomes.  (+info)

Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. (70/4169)

The presence of a single resistance (R) gene allele can determine plant disease resistance. The protein products of such genes may act as receptors that specifically interact with pathogen-derived factors. Most functionally defined R-genes are of the nucleotide binding site-leucine rich repeat (NBS-LRR) supergene family and are present as large multigene families. The specificity of R-gene interactions together with the robustness of plant-pathogen interactions raises the question of their gene number and diversity in the genome. Genomic sequences from tomato showing significant homology to genes conferring race-specific resistance to pathogens were identified by systematically "scanning" the genome using a variety of primer pairs based on ubiquitous NBS motifs. Over 70 sequences were isolated and 10% are putative pseudogenes. Mapping of the amplified sequences on the tomato genetic map revealed their organization as mixed clusters of R-gene homologues that showed in many cases linkage to genetically characterized tomato resistance loci. Interspecific examination within Lycopersicon showed the existence of a null allele. Consideration of the tomato and potato comparative genetic maps unveiled conserved syntenic positions of R-gene homologues. Phylogenetic clustering of R-gene homologues within tomato and other Solanaceae family members was observed but not with R-gene homologues from Arabidopsis thaliana. Our data indicate remarkably rapid evolution of R-gene homologues during diversification of plant families.  (+info)

The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation. (71/4169)

The Hopi gene is a member of the maize r1 gene family. By genetic and molecular analyses we report that Hopi consists of a single gene residing on chromosome 10 approximately 4.5 cM distal to r1. Hopi conditions anthocyanin deposition in aleurone, scutellum, pericarp, root, mesocotyl, leaves, and anthers, thus representing one of the broadest specifications of pigmentation pattern reported to date of all the r1 genes. A unique feature of the Hopi gene is that seeds are completely devoid of pigment at maturity but show a photoinducible germination-dependent anthocyanin accumulation in aleurone and scutellum. Our analysis has shown that the Hopi transcript is not present in scutellum of developing seeds but is induced only upon germination and that the simultaneous presence of both C1 and Hopi mRNAs is necessary to achieve A1 activation in scutella. We conclude that the expression pattern of the Hopi gene accounts for the germination-dependent anthocyanin synthesis in scutella, whereas the developmental competence of germinating seeds to induce anthocyanin production in scutella results from the combination of the light-inducible expression of C1 and the developmentally regulated expression of the Hopi gene.  (+info)

Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. (72/4169)

Inbreeding depression is important in the evolution of plant populations and mating systems. Previous studies have suggested that early-acting inbreeding depression in plants is primarily due to lethal alleles and possibly epistatic interactions. Recent advances in molecular markers now make genetic mapping a powerful tool to study the genetic architecture of inbreeding depression. We describe a genome-wide evaluation of embryonic viability loci in a selfed family of loblolly pine (Pinus taeda L.), using data from AFLP markers from an essentially complete genome map. Locus positions and effects were estimated from segregation ratios using a maximum-likelihood interval mapping procedure. We identified 19 loci showing moderately deleterious to lethal embryonic effects. These loci account for >13 lethal equivalents, greater than the average of 8.5 lethal equivalents reported for loblolly pine. Viability alleles show predominantly recessive action, although potential overdominance occurs at 3 loci. We found no evidence for epistasis in the distribution of pairwise marker correlations or in the regression of fitness on the number of markers linked to deleterious alleles. The predominant role of semilethal alleles in embryonic inbreeding depression has implications for the evolution of isolated populations and for genetic conservation and breeding programs in conifers.  (+info)