Identification of phytoplankton from flow cytometry data by using radial basis function neural networks. (1/494)

We describe here the application of a type of artificial neural network, the Gaussian radial basis function (RBF) network, in the identification of a large number of phytoplankton strains from their 11-dimensional flow cytometric characteristics measured by the European Optical Plankton Analyser instrument. The effect of network parameters on optimization is examined. Optimized RBF networks recognized 34 species of marine and freshwater phytoplankton with 91. 5% success overall. The relative importance of each measured parameter in discriminating these data and the behavior of RBF networks in response to data from "novel" species (species not present in the training data) were analyzed.  (+info)

Galacturonic-acid-induced increase of superoxide production in red tide phytoplankton Chattonella marina and Heterosigma akashiwo. (2/494)

Red tide phytoplankton, Chattonella marina and Heterosigma akashiwo, are known to generate superoxide anion (O2-). We found that galacturonic acid (GaLUA) stimulated C. marina and H. akashiwo to generate increased amounts of O2-. Since such effect was not observed in any other monosaccharides tested, our results suggest that the binding of GalUA to specific sites on the flagellate cell surface may induce the increase of 02- production.  (+info)

Molecular and physiological responses of two classes of marine chromophytic phytoplankton (Diatoms and prymnesiophytes) during the development of nutrient-stimulated blooms. (3/494)

Generic taxon-specific DNA probes that target an internal region of the gene (rbcL) encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) were developed for two groups of marine phytoplankton (diatoms and prymnesiophytes). The specificity and utility of the probes were evaluated in the laboratory and also during a 1-month mesocosm experiment in which we investigated the temporal variability in RubisCO gene expression and primary production in response to inorganic nutrient enrichment. We found that the onset of successive bloom events dominated by each of the two classes of chromophyte algae was associated with marked taxon-specific increases in rbcL transcription rates. These observations suggest that measurements of RubisCO gene expression can provide an early indicator of the development of phytoplankton blooms and may also be useful in predicting which taxa are likely to dominate a bloom.  (+info)

The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. (4/494)

A range of marine phytoplankton was grown in closed systems in order to investigate the kinetics of dissolved inorganic carbon (DIC) use and the influence of the nitrogen source under conditions of constant pH. The kinetics of DIC use could be described by a rectangular hyperbolic curve, yielding estimations of KG(DIC) (the half saturation constant for carbon-specific growth, i.e. C mu) and mu max (the theoretical maximum C mu). All species attained a KG(DIC) within the range of 30-750 microM DIC. For most species, NH4+ use enabled growth with a lower KG(DIC) and/or, for two species, an increase in mu max. At DIC concentrations of > 1.6 mM, C mu was > 90% saturated for all species relative to the rate at the natural seawater DIC concentration of 2.0 mM. The results suggest that neither the rate nor the extent of primary productivity will be significantly limited by the DIC in the quasi-steady-state conditions associated with oligotrophic oceans. The method needs to be applied in the conditions associated with dynamic coastal (eutrophic) systems for clarification of a potential DIC rate limitation where cells may grow to higher densities and under variable pH and nitrogen supply.  (+info)

Marine toxins. (5/494)

Seafood products are important both nutritionally and economically. Within Europe, some 12 billion Pounds of fishery products are consumed annually and an enormous variety of species are available. Although seafood is rarely implicated in food poisoning, compared to other food sources, it does provide some specific human health hazards unique to this particular resource. Generally, these are toxins from toxic microscopic algae which accumulate through the food-chain. The toxins can cause various neurological and gastrointestinal illnesses and, potentially, consumers are exposed from seafood produced within Europe, from imported products, or from seafood eaten while travelling abroad. The symptoms of illness which may be encountered, the source and mode of action of the toxins, and some emerging problems are described. European legislation aims to ensure the quality and safety of seafood products by prohibiting sale of some toxic species, setting toxin limits, requiring monitoring and controlling imports.  (+info)

Characterization of sulfate assimilation in marine algae focusing on the enzyme 5'-adenylylsulfate reductase. (6/494)

5'-Adenylylsulfate (APS) reductase was characterized in diverse marine algae. A cDNA encoding APS reductase from Enteromorpha intestinalis (EAPR) was cloned by functional complementation of an Escherichia coli cysH mutant. The deduced amino acid sequence shows high homology with APS reductase (APR) from flowering plants. Based on the probable transit peptide cleavage site the mature protein is 45.7 kD. EAPR expressed as a His-tagged recombinant protein catalyzes reduced glutathione-dependent reduction of APS to sulfite, exhibiting a specific activity of approximately 40 micromol min(-1) mg protein(-1) and Michealis-Menten kinetic constants of approximately 1.4 mM for reduced glutathione and approximately 6.5 microM for APS. APR activity and expression were studied in relation to the production of 3-dimethylsulfoniopropionate (DMSP), a sulfonium compound produced by many marine algae. A diverse group of DMSP-producing species showed extremely high enzyme activity (up to 400 times that found in flowering plants). Antibodies raised against a conserved peptide of APR strongly cross-reacted with a protein of 45 kD in several chlorophytes but insignificantly with chromophytes. In the chlorophyte Tetraselmis sp., APR activity varies significantly during the culture cycle and does not follow the changes in cellular DMSP content. However, a positive correlation was found between cell-based APR activity and specific growth rate.  (+info)

Geographical patterns of cholera in Mexico, 1991-1996. (7/494)

BACKGROUND: The seventh cholera pandemic has been ongoing in Mexico since 1991 and threatens to become endemic. This paper aims to determine the geographical pattern of cholera in Mexico to define areas at high risk of endemic cholera. METHODS: Ecologic research was conducted based upon the cartography of disease incidence. The 32 Mexican states were grouped into five strata according to the value of the 1991-1996 cumulative incidence rate of cholera. Rate ratios were computed for strata of states classified by geographical situation, urbanization, and poverty level. RESULTS: Cholera incidence was 2.47 times higher in coastal states than in the interior (95% CI : 2.42-2.52). The disease was negatively associated with urbanization. Incidence in the least urbanized stratum was four times as high as in the most urban stratum (95% CI : 3.9-4.12). The poorest stratum showed the most remarkable incidence, i.e. 5.9 times higher than the rate in the least poor stratum (95% CI : 5.73-6.04). CONCLUSIONS: This ecologic research suggests that high poverty level, low urbanization, and southern location are the most important predictors of endemic cholera in Mexican states. It is hypothesized that the natural environment of the coastal plains in southern states may also play a significant role in cholera incidence. Poor communities residing in the southern, predominantly rural, coastal states should be prioritized when it comes to investing in safe water supply facilities, adequate excreta disposal systems and cholera surveillance.  (+info)

Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. (8/494)

Extremely halophilic archaea contain retinal-binding integral membrane proteins called bacteriorhodopsins that function as light-driven proton pumps. So far, bacteriorhodopsins capable of generating a chemiosmotic membrane potential in response to light have been demonstrated only in halophilic archaea. We describe here a type of rhodopsin derived from bacteria that was discovered through genomic analyses of naturally occuring marine bacterioplankton. The bacterial rhodopsin was encoded in the genome of an uncultivated gamma-proteobacterium and shared highest amino acid sequence similarity with archaeal rhodopsins. The protein was functionally expressed in Escherichia coli and bound retinal to form an active, light-driven proton pump. The new rhodopsin exhibited a photochemical reaction cycle with intermediates and kinetics characteristic of archaeal proton-pumping rhodopsins. Our results demonstrate that archaeal-like rhodopsins are broadly distributed among different taxa, including members of the domain Bacteria. Our data also indicate that a previously unsuspected mode of bacterially mediated light-driven energy generation may commonly occur in oceanic surface waters worldwide.  (+info)