Transductions to generate plant form and pattern: an essay on cause and effect. (73/1131)

Many complex processes can be broken into transduction steps where one state is converted to another by a well defined activity. One difficulty for analysis is that transductions occur in chains or networks. Another, of primary concern here, is that a single transduction can be complex. Some such transductions can efficiently explain phenomena often thought to be summations or orchestrations of many simple transductions. Pattern formation is in this category. For a wide range of transductions one can define cause and effect in a differential equation. In its integral one can define the before and after states. The main experimental tactic to characterize unknown transductions is co-variation. The before state (input) is altered, change in the after state (output) is assayed. Thus an unknown transduction, with cause and effect embodied in the differential, is investigated through long-term changes in its integral. This is fully practical when all of the integral is known or readily surmised, as in simple discrete biochemical transductions. As causal differential expressions become complex, their integrals become more versatile in generating output because this changes not only with variation in the expression itself but also with boundary conditions and limits. These very features, however, make such a function increasingly intractable to discovery by co-variation. Only a small part of the integral is embodied in the before and after states; the remainder is not readily surmised. Accordingly, in contrast to reliance on the role of controls to deduce unknown simple transductions, the complex ones are generally established through formalization of the differential nature of the process itself.  (+info)

Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. (74/1131)

Wild-type Arabidopsis plants maintain a relatively constant size over a wide range of temperatures. Here we show that this homeostasis requires the BONZAI1 (BON1) gene because bon1 null mutants make miniature fertile plants at 22 degrees C but have wild-type appearance at 28 degrees C. The expression of BON1 and a BON1-associated protein (BAP1) is modulated by temperature. Thus BON1 and BAP1 may have a direct role in regulating cell expansion and cell division at lower temperatures. BON1 contains a Ca(2+)-dependent phospholipid-binding domain and is associated with the plasma membrane. It belongs to the copine gene family, which is conserved from protozoa to humans. Our data suggest that this gene family may function in the pathway of membrane trafficking in response to external conditions.  (+info)

The role of ion channels in light-dependent stomatal opening. (75/1131)

Stomatal opening represents a major determinant of plant productivity and stress management. Because plants lose water essentially through open stomata, volume control of the pore-forming guard cells represents a key step in the regulation of plant water status. These sensory cells are able to integrate various signals such as light, auxin, abscisic acid, and CO(2). Following signal perception, changes in membrane potential and activity of ion transporters finally lead to the accumulation of potassium salts and turgor pressure formation. This review analyses recent progress in molecular aspects of ion channel regulation and suggests how these developments impact on our understanding of light- and auxin-dependent stomatal action.  (+info)

Whence meiosis? (76/1131)

Sexual reproduction predominates among eukaryotic organisms on our planet. While debate continues over why this should be so, burgeoning genomic and functional information now allows us to begin to think reasonably about some of the events that may have occurred to make sex possible in the first place.  (+info)

Large electrical currents traverse growing pollen tubes. (77/1131)

Using a newly developed vibrating electrode, we have explored the electric fields around lily pollen germinating in vitro. From these field measurements, we infer that each weeted pollen drives a steady current of a few hundred picoamperes through itself. Considered as a flow of positive ions, this current enters an ungerminated grain's prospective growth site and leaves it opposite end. After a grain germinates and forms a tube, this current enters most of the growing tube and leaves the whole grain. The current densities over both of these extended surface regions are relatively uniform, and the boundary zone, near the tube's base, is relatively narrow. This current continues as long as the tube grows, and even continues when elongation, as well as cytoplasmic streaming, are blocked by 1 mug/ml of cytochalasin B. After a otherwise indistinguishable minority of tubes have grown to lengths of a millimeter or more, their current comes to include an endless train of discrete and characteristic current pulses as well as a steady component. These pulses are about 30s long, never overlap, recur every 60-100s, and seem to enter a region more restricted to be growing tip than the steady current's sink. In most ways, the current through growing lily pollen resembles that known to flow through focoid eggs.  (+info)

Transformation of plastids in the leaves of Acer negundo L. var. odessanum (H. Rothe). (78/1131)

The leaves of Acer negundo L. var. odessanum (H. Rothe), if permanently exposed to strong sunlight, do not green, but remain yellow and finally become bleached. In yellow leaves the plastids contain single thylakoids and no grana. In plastids of bleached leaves, however, only vesicles are present. The concentration of chlorophylls and photosynthetic activity are much lower in those leaves than in the green ones. If the illumination is reduced (e.g. by shading) both the yellow and the bleached leaves become greenish, and even fully green after a few days at a sufficiently low light intensity. The plastids of yellow-green leaves contain small grana. In dark green leaves the thylakoid system of the chloroplasts is normally developed forming true grana, regardless of whether the leaves were originally green, or became green by shading the yellow or bleached ones. Their pigment concentration and photosynthetic activity are also normal. If green leaves are exposed to sunlight they do not yellow or bleach. During a 3-week period the structure of the thylakoid system did not perceivably change, with the exception that large plastoglobules formed in the stroma.  (+info)

Giving meaning to movement. (79/1131)

A growing body of evidence indicates that plant transcription factors move between cells. A recent paper by Nakajima et al. (2001) shows that movement of the SHORTROOT protein provides a mechanism for signaling positional information between cell layers of the root.  (+info)

RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. (80/1131)

A 5-kDa polypeptide was isolated from tobacco leaves that induced a rapid alkalinization of the culture medium of tobacco suspension-cultured cells and a concomitant activation of an intracellular mitogen-activated protein kinase. An N-terminal sequence was obtained, and a cDNA coding for the 49-aa polypeptide was isolated from a tobacco cDNA library. The cDNA encoded a preproprotein of 115 amino acids that contained the polypeptide at its C terminus. A search among known expressed sequence tags revealed that genes encoding Rapid ALkalinization Factor (RALF) preproproteins were present in various tissues and organs from 16 species of plants representing 9 families. A tomato homolog of the polypeptide was synthesized and, when supplied to germinating tomato and Arabidopsis seeds, it caused an arrest of root growth and development. Although its specific role in growth has not been established, the polypeptide joins the ranks of the increasing number of polypeptide hormones that are known to regulate plant stress, growth, and development.  (+info)