Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. (73/63708)

Members of the transforming growth factor (TGF)-beta family of cell-signaling molecules have been implicated recently in mammalian left-right (LR) axis development, the process by which vertebrates lateralize unpaired organs (e.g., heart, stomach, and spleen). Two family members, Lefty1 and Lefty2, are expressed exclusively on the left side of the mouse embryo by 8.0 days post coitum. This asymmetry is lost or reversed in two murine models of abnormal LR-axis specification, inversus viscerum (iv) and inversion of embryonic turning (inv). Furthermore, mice homozygous for a Lefty1 null allele manifest LR malformations and misexpress Lefty2. We hypothesized that Lefty mutations may be associated with human LR-axis malformations. We now report characterization of two Lefty homologues, LEFTY A and LEFTY B, separated by approximately 50 kb on chromosome 1q42. Each comprises four exons spliced at identical positions. LEFTY A is identical to ebaf, a cDNA previously identified in a search for genes expressed in human endometrium. The deduced amino acid sequences of LEFTY A and LEFTY B are more similar to each other than to Lefty1 or Lefty2. Analysis of 126 human cases of LR-axis malformations showed one nonsense and one missense mutation in LEFTY A. Both mutations lie in the cysteine-knot region of the protein LEFTY A, and the phenotype of affected individuals is very similar to that typically seen in Lefty1-/- mice with LR-axis malformations.  (+info)

A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. (74/63708)

We have identified a novel fibroblast growth factor receptor 3 (FGFR3) missense mutation in four unrelated individuals with skeletal dysplasia that approaches the severity observed in thanatophoric dysplasia type I (TD1). However, three of the four individuals developed extensive areas of acanthosis nigricans beginning in early childhood, suffer from severe neurological impairments, and have survived past infancy without prolonged life-support measures. The FGFR3 mutation (A1949T: Lys650Met) occurs at the nucleotide adjacent to the TD type II (TD2) mutation (A1948G: Lys650Glu) and results in a different amino acid substitution at a highly conserved codon in the kinase domain activation loop. Transient transfection studies with FGFR3 mutant constructs show that the Lys650Met mutation causes a dramatic increase in constitutive receptor kinase activity, approximately three times greater than that observed with the Lys650Glu mutation. We refer to the phenotype caused by the Lys650Met mutation as "severe achondroplasia with developmental delay and acanthosis nigricans" (SADDAN) because it differs significantly from the phenotypes of other known FGFR3 mutations.  (+info)

Cyclic ichthyosis with epidermolytic hyperkeratosis: A phenotype conferred by mutations in the 2B domain of keratin K1. (75/63708)

Bullous congenital ichthyosiform erythroderma (BCIE) is characterized by blistering and erythroderma in infancy and by erythroderma and ichthyosis thereafter. Epidermolytic hyperkeratosis is a hallmark feature of light and electron microscopy. Here we report on four individuals from two families with a unique clinical disorder with histological findings of epidermolytic hyperkeratosis. Manifesting erythema and superficial erosions at birth, which improved during the first few months of life, affected individuals later developed palmoplantar hyperkeratosis with patchy erythema and scale elsewhere on the body. Three affected individuals exhibit dramatic episodic flares of annular, polycyclic erythematous plaques with scale, which coalesce to involve most of the body surface. The flares last weeks to months. In the interim periods the skin may be normal, except for palmoplantar hyperkeratosis. Abnormal keratin-filament aggregates were observed in suprabasal keratinocytes from both probands, suggesting that the causative mutation might reside in keratin K1 or keratin K10. In one proband, sequencing of K1 revealed a heterozygous mutation, 1436T-->C, predicting a change of isoleucine to threonine in the highly conserved helix-termination motif. In the second family, a heterozygous mutation, 1435A-->T, was found in K1, predicting an isoleucine-to-phenylalanine substitution in the same codon. Both mutations were excluded in both a control population and all unaffected family members tested. These findings reveal that a clinical phenotype distinct from classic BCIE but with similar histology can result from K1 mutations and that mutations at this codon give rise to a clinically unique condition.  (+info)

Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. (76/63708)

Dubin-Johnson syndrome (DJS) is an autosomal recessive disease characterized by conjugated hyperbilirubinemia. Previous studies of the defects in the human canalicular multispecific organic anion transporter gene (MRP2/cMOAT) in patients with DJS have suggested that the gene defects are responsible for DJS. In this study, we determined the exon/intron structure of the human MRP2/cMOAT gene and further characterized mutations in patients with DJS. The human MRP2/cMOAT gene contains 32 exons, and it has a structure that is highly conserved with that of another ATP-binding-cassette gene, that for a multidrug resistance-associated protein. We then identified three mutations, including two novel ones. All mutations identified to date are in the cytoplasmic domain, which includes the two ATP-binding cassettes and the linker region, or adjacent putative transmembrane domain. Our results confirm that MRP2/cMOAT is the gene responsible for DJS. The finding that mutations are concentrated in the first ATP-binding-cassette domain strongly suggests that a disruption of this region is a critical route to loss of function.  (+info)

Autosomal dominant myopathy with proximal weakness and early respiratory muscle involvement maps to chromosome 2q. (77/63708)

Two Swedish families with autosomal dominant myopathy, who also had proximal weakness, early respiratory failure, and characteristic cytoplasmic bodies in the affected muscle biopsies, were screened for linkage by means of the human genome screening set (Cooperative Human Linkage Center Human Screening Set/Weber version 6). Most chromosome regions were completely excluded by linkage analysis (LOD score <-2). Linkage to the chromosomal region 2q24-q31 was established. A maximum combined two-point LOD score of 4.87 at a recombination fraction of 0 was obtained with marker D2S1245. Haplotype analysis indicated that the gene responsible for the disease is likely to be located in the 17-cM region between markers D2S2384 and D2S364. The affected individuals from these two families share an identical haplotype, which suggests a common origin.  (+info)

Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. (78/63708)

A new metabolic signaling pathway for arginine, both a chemoeffector and a fermentative energy source, is described for Halobacterium salinarum. Systematic screening of 80+ potentially chemotactic compounds with two behavioral assays identified leucine, isoleucine, valine, methionine, cysteine, arginine and several peptides as strong chemoattractants. Deletion analysis of a number of potential halobacterial transducer genes led to the identification of Car, a specific cytoplasmic arginine transducer which lacks transmembrane helices and was biochemically shown to be localized in the cytoplasm. Flow assays were used to show specific adaptive responses to arginine and ornithine in wild-type but not Deltacar cells, demonstrating the role of Car in sensing arginine. The signaling pathway from external arginine to the flagellar motor of the cell involves an arginine:ornithine antiporter which was quantitatively characterized for its transport kinetics and inhibitors. By compiling the chemotactic behavior, the adaptive responses and the characteristics of the arginine:ornithine antiporter to arginine and its analogs, we now understand how the combination of arginine uptake and its metabolic conversion is required to build an effective sensing system. In both bacteria and the archaea this is the first chemoeffector molecule of a soluble methylatable transducer to be identified.  (+info)

Telomere shortening in mTR-/- embryos is associated with failure to close the neural tube. (79/63708)

Mice genetically deficient for the telomerase RNA (mTR) can be propagated for only a limited number of generations. In particular, mTR-/- mice of a mixed C57BL6/129Sv genetic background are infertile at the sixth generation and show serious hematopoietic defects. Here, we show that a percentage of mTR-/- embryos do not develop normally and fail to close the neural tube, preferentially at the forebrain and midbrain. The penetrance of this defect increases with the generation number, with 30% of the mTR-/- embryos from the fifth generation showing the phenotype. Moreover, mTR-/- kindreds in a pure C57BL6 background are only viable up to the fourth generation and also show defects in the closing of the neural tube. Cells derived from mTR-/- embryos that fail to close the neural tube have significantly shorter telomeres and decreased viability than their mTR-/- littermates with a closed neural tube, suggesting that the neural tube defect is a consequence of the loss of telomere function. The fact that the main defect detected in mTR-/- embryos is in the closing of the neural tube, suggests that this developmental process is among the most sensitive to telomere loss and chromosomal instability.  (+info)

Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. (80/63708)

p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  (+info)