The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. (1/761)

The establishment of the major body axes of the Drosophila egg and future embryo requires strict regulation of gurken mRNA and protein localization. Here, we show that grk mRNA and protein localization is dependent on synthesis of grk transcripts in the oocyte nucleus and on RNA localization elements in the 5' portion of the transcript. We also show that gurken mRNA and protein localization is dependent on region-specific translation of gurken transcripts and identify K10 as a probable negative regulator of gurken translation.  (+info)

A novel follicle-cell-dependent dominant female sterile allele, StarKojak, alters receptor tyrosine kinase signaling in Drosophila. (2/761)

We describe a new dominant allele, StarKojak, that alters receptor tyrosine kinase signaling in the follicle cells and in the eyes in Drosophila. We isolated StarKojak in a screen for follicle-cell-dependent dominant female sterile mutations. We show that StarKojak and revertants of StarKojak do not complement Star loss-of-function mutations. We propose that StarKojak is a novel type of allele of Star that has both dominant gain-of-function phenotypes early in development and dominant loss-of-function phenotypes later in development. Star encodes a putative transmembrane protein that has previously been shown to be a critical component of the epidermal growth factor receptor tyrosine kinase signaling pathway. Early in oogenesis, Star mRNA expression is higher in StarKojak egg chambers than in wild-type egg chambers, consistent with its gain-of-function phenotype. Later in oogenesis, Star mRNA expression is lower in StarKojak follicle cells than in wild-type follicle cells, consistent with its loss-of-function phenotype. By genetically analyzing StarKojak and its revertants, we present evidence that Star is involved in anterior-posterior axis formation both in the female germline cells and in the somatic follicle cells. We also demonstrate that at least part of the dominant female sterile phenotype of StarKojak is restricted to the posterior-pole follicle cells. We propose that Star functions by processing pro-Gurken to mature Gurken, which is thereby released in the region between the oocyte and the follicle cells and binds to the epidermal growth factor receptor in the follicle cells.  (+info)

Growth factors and goitrogenesis. (3/761)

By combining data from studies of multinodular non-toxic goitre (MNTG) with data from rat models of goitre induction and in vitro models, a map of the growth factors involved in goitrogenesis has been constructed. We have addressed the roles of the insulin-like growth factors, transforming growth factors, fibroblast growth factors, endothelins, etc. We hypothesise that an imbalance in the interactions between the various growth factor axes exists in MNTG which favours cell replication. Thyrotrophin, although not significantly elevated in MNTG, exerts critical effects through interactions with autocrine and paracrine factors and their receptors. Expansion of the thyroidal vascular bed through angiogenesis is closely co-ordinated with follicular cell expansion and folliculoneogenesis, and while the integrated paracrine actions of fibroblast growth factors, vascular endothelial growth factor and endothelin probably play central roles, additional, as yet elusive, factors are probably involved. The combination of in vitro and in vivo approaches, designed to address specific questions, will undoubtedly continue to prove invaluable in dissecting further the complex interactions that exist between these growth factors, their binding proteins and receptors in goitrogenesis.  (+info)

Internalization of the TXA2 receptor alpha and beta isoforms. Role of the differentially spliced cooh terminus in agonist-promoted receptor internalization. (4/761)

Thromboxane A2 (TXA2) potently stimulates platelet aggregation and smooth muscle constriction and is thought to play a role in myocardial infarction, atherosclerosis, and bronchial asthma. The TXA2 receptor (TXA2R) is a member of the G protein-coupled receptor family and is found as two alternatively spliced isoforms, alpha (343 residues) and beta (407 residues), which share the first 328 residues. In the present report, we demonstrate by enzyme-linked immunosorbent assay and immunofluorescence microscopy that the TXA2Rbeta, but not the TXA2Ralpha, undergoes agonist-induced internalization when expressed in HEK293 cells as well as several other cell types. Various dominant negative mutants were used to demonstrate that the internalization of the TXA2Rbeta is dynamin-, GRK-, and arrestin-dependent in HEK293 cells, suggesting the involvement of receptor phosphorylation and clathrin-coated pits in this process. Interestingly, the agonist-stimulated internalization of both the alpha and beta isoforms, but not of a mutant truncated after residue 328, can be promoted by overexpression of arrestin-3, identifying the C-tails of both receptors as necessary in arrestin-3 interaction. Simultaneous mutation of two dileucine motifs in the C-tail of TXA2Rbeta did not affect agonist-promoted internalization. Analysis of various C-tail deletion mutants revealed that a region between residues 355 and 366 of the TXA2Rbeta is essential for agonist-promoted internalization. These data demonstrate that alternative splicing of the TXA2R plays a critical role in regulating arrestin binding and subsequent receptor internalization.  (+info)

The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. (5/761)

We have identified the Drosophila transmembrane molecule kekkon 1 (kek1) as an inhibitor of the epidermal growth factor receptor (EGFR) and demonstrate that it acts in a negative feedback loop to modulate the activity of the EGFR tyrosine kinase. During oogenesis, kek1 is expressed in response to the Gurken/EGFR signaling pathway, and loss of kek1 activity is associated with an increase in EGFR signaling. Consistent with our loss-of-function studies, we demonstrate that ectopic overexpression of kek1 mimics a loss of EGFR activity. We show that the extracellular and transmembrane domains of Kek1 can inhibit and physically associate with the EGFR, suggesting potential models for this inhibitory mechanism.  (+info)

Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. (6/761)

Heterogeneous nuclear RNA-binding proteins, hnRNPs, have been implicated in nuclear export of mRNAs in organisms from yeast to humans. A germ-line mutation in a Drosophila hnRNP, Squid (Sqd)/hrp40, causes female sterility as a result of mislocalization of gurken (grk) mRNA during oogenesis. Alternative splicing produces three isoforms, SqdA, SqdB, and SqdS. Here we show that these isoforms are not equivalent; SqdA and SqdS perform overlapping but nonidentical functions in grk mRNA localization and protein accumulation, whereas SqdB cannot perform these functions. Furthermore, although all three Sqd isoforms are expressed in the germline cells of the ovary, they display distinct intracellular distributions. Both SqdB and SqdS are detected in germ-line nuclei, whereas SqdA is predominantly cytoplasmic. We show that this differential nuclear accumulation is correlated with a differential association with the nuclear import protein Transportin. Finally, we provide evidence that grk mRNA localization and translation are coupled by an interaction between Sqd and the translational repressor protein Bruno. These results demonstrate the isoform-specific contributions of individual hnRNP proteins in the regulation of a specific mRNA. Moreover, these data suggest a novel role for hnRNPs in localization and translational regulation of mRNAs.  (+info)

Characterization of differentially expressed genes in purified Drosophila follicle cells: toward a general strategy for cell type-specific developmental analysis. (7/761)

Axis formation in Drosophila depends on correct patterning of the follicular epithelium and on signaling between the germ line and soma during oogenesis. We describe a method for identifying genes expressed in the follicle cells with potential roles in axis formation. Follicle cells are purified from whole ovaries by enzymatic digestion, filtration, and fluorescence-activated cell sorting (FACS). Two strategies are used to obtain complementary cell groups. In the first strategy, spatially restricted subpopulations are marked for FACS selection using a green fluorescent protein (GFP) reporter. In the second, cells are purified from animals mutant for the epidermal growth factor receptor ligand gurken (grk) and from their wild-type siblings. cDNA from these samples of spatially restricted or genetically mutant follicle cells is used in differential expression screens employing PCR-based differential display or hybridization to a cDNA microarray. Positives are confirmed by in situ hybridization to whole mounts. These methods are found to be capable of identifying both spatially restricted and grk-dependent transcripts. Results from our pilot screens include (i) the identification of a homologue of the immunophilin FKBP-12 with dorsal anterior expression in egg chambers, (ii) the discovery that the ecdysone-inducible nuclear hormone receptor gene E78 is regulated by grk during oogenesis and is required for proper dorsal appendage formation, and (iii) the identification of a Drosophila homologue of the human SET-binding factor gene SBF1 with elevated transcription in grk mutant egg chambers.  (+info)

Growth factor staining patterns in the pig retina following retinal laser photocoagulation. (8/761)

AIM: To identify changes in growth factor expression in miniature pig retinas following retinal laser photocoagulation. METHODS: Pigs were sacrificed at different times (15 minutes to 42 days) post-laser and the retinas were immunolabelled for basic fibroblast growth factor, insulin-like growth factor I, transforming growth factor beta, epidermal growth factor, transforming growth factor alpha, platelet derived growth factor, vascular endothelial growth factor, and epidermal growth factor receptor. Total mRNA levels were also determined. RESULTS: With the exception of vascular endothelial growth factor, immunoreactivity for all other growth factors studied and epidermal growth factor receptor was observed throughout normal non-lasered control retina, generally being high in the retinal pigment epithelium and low in the neural retina. Changes in growth factor expression following laser photocoagulation were observed only in burn areas and changes were mainly confined to the retinal pigment epithelium and outer nuclear layer. The immunoreactivity within retinal pigment epithelial cells in burn areas was either absent or decreased following laser treatment but returned to normal by 21 days. The immunoreactivity was increased within the outer nuclear layer of burn areas during the healing process but returned to normal by 42 days. Vascular endothelial growth factor immunoreactivity was weak/absent in the normal retina and remained unchanged following laser photocoagulation. Change of total mRNA levels in burn areas during time post-laser was confined to retinal pigment epithelial cells, being low immediately following photocoagulation and returning to normal by 42 days. CONCLUSIONS: These results demonstrate a temporal alteration in growth factor expression and transcriptional activity in the retina following laser photocoagulation.  (+info)