Cell migration and chick limb development: chemotactic action of FGF-4 and the AER. (1/271)

Experiments have been carried out to investigate the role of the apical ectodermal ridge (AER) and FGF-4 on the control of cell migration during limb bud morphogenesis. By coupling DiI cell labeling with ectopic implantation of FGF-4 microcarrier beads we have found that FGF-4 acts as a potent and specific chemoattractive agent for mesenchymal cells of the limb bud. The response to FGF-4 is dose dependent in both the number of cells stimulated to migrate and the distance migrated. The cell migration response to FGF-4 appears to be independent of the known inductive activity of FGF-4 on Shh gene expression. We investigated the role of the AER in controlling cell migration by characterizing the migration pattern of DiI-labeled subapical cells during normal limb outgrowth and following partial AER removal. Subapical cells within 75 micrometer of the AER migrate to make contact with the AER and are found intermingled with nonlabeled cells. Thus, the progress zone is dynamic with cells constantly altering their neighbor relationships during limb outgrowth. AER removal studies show that cell migration is AER dependent and that subapical cells redirect their path of migration toward a functional AER. These studies indicate that the AER has a chemoattractive function and regulates patterns of cell migration during limb outgrowth. Our results suggest that the chemoattractive activity of the AER is mediated in part by the production of FGF-4.  (+info)

Constitutive activation of sonic hedgehog signaling in the chicken mutant talpid(2): Shh-independent outgrowth and polarizing activity. (2/271)

We have examined the developmental properties of the polydactylous chicken mutant, talpid(2). Ptc, Gli1, Bmp2, Hoxd13, and Fgf4 are expressed throughout the anteroposterior axis of the mutant limb bud, despite normal Shh expression. The expression of Gli3, Ihh, and Dhh appears to be normal, suggesting that the Shh signaling pathway is constitutively active in talpid(2) mutants. We show that preaxial talpid(2) limb bud mesoderm has polarizing activity in the absence of detectable Shh mRNA. When the postaxial talpid(2) limb bud (including all Shh-expressing cells) is removed, the preaxial cells reform a normal-shaped talpid(2) limb bud (regulate). However, a Shh-expressing region (zone of polarizing activity) does not reform; nevertheless Fgf4 expression in the apical ectodermal ridge is maintained. Such reformed talpid(2) limb buds develop complete talpid(2) limbs. After similar treatment, normal limb buds downregulate Fgf4, the preaxial cells do not regulate, and a truncated anteroposterior deficient limb forms. In talpid(2) limbs, distal outgrowth is independent of Shh and correlates with Fgf4, but not Fgf8, expression by the apical ectodermal ridge. We propose a model for talpid(2) in which leaky activation of the Shh signaling pathway occurs in the absence of Shh ligand.  (+info)

The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. (3/271)

The development of the feather buds during avian embryogenesis is a classic example of a spacing pattern. The regular arrangement of feather buds is achieved by a process of lateral inhibition whereby one developing feather bud prevents the formation of similar buds in the immediate vicinity. Lateral inhibition during feather formation implicates a role of long range signalling during this process. Recent work has shown that BMPs are able to enforce lateral inhibition during feather bud formation. However these results do not explain how the feather bud escapes the inhibition itself. We show that this could be achieved by the expression of the BMP antagonist, Follistatin. Furthermore we show that local application of Follistatin leads to the development of ectopic feather buds. We suggest that Follistatin locally antagonises the action of the BMPs and so permits the cellular changes associated with feather placode formation. We also provide evidence for the role of short range signalling during feather formation. We have correlated changes in cellular morphology in feather placodes with the expression of the gene Eph-A4 which encodes a receptor tyrosine kinase that requires direct cell-cell contact for activation. We show that the expression of this gene precedes cellular reorganisation required for feather bud formation.  (+info)

The dominant hemimelia mutation uncouples epithelial-mesenchymal interactions and disrupts anterior mesenchyme formation in mouse hindlimbs. (4/271)

Epithelial-mesenchymal interactions are essential for both limb outgrowth and pattern formation in the limb. Molecules capable of communication between these two tissues are known and include the signaling molecules SHH and FGF4, FGF8 and FGF10. Evidence suggests that the pattern and maintenance of expression of these genes are dependent on a number of factors including regulatory loops between genes expressed in the AER and those in the underlying mesenchyme. We show here that the mouse mutation dominant hemimelia (Dh) alters the pattern of gene expression in the AER such that Fgf4, which is normally expressed in a posterior domain, and Fgf8, which is expressed throughout are expressed in anterior patterns. We show that maintenance of Shh expression in the posterior mesenchyme is not dependent on either expression of Fgf4 or normal levels of Fgf8 in the overlying AER. Conversely, AER expression of Fgf4 is not directly dependent on Shh expression. Also the reciprocal regulatory loop proposed for Fgf8 in the AER and Fgf10 in the underlying mesenchyme is also uncoupled by this mutation. Early during the process of limb initiation, Dh is involved in regulating the width of the limb bud, the mutation resulting in selective loss of anterior mesenchyme. The Dh gene functions in the initial stages of limb development and we suggest that these initial roles are linked to mechanisms that pattern gene expression in the AER.  (+info)

The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. (5/271)

In this study, we have analyzed the expression and function of Gremlin in the developing avian limb. Gremlin is a member of the DAN family of BMP antagonists highly conserved through evolution able to bind and block BMP2, BMP4 and BMP7. At early stages of development, gremlin is expressed in the dorsal and ventral mesoderm in a pattern complementary to that of bmp2, bmp4 and bmp7. The maintenance of gremlin expression at these stages is under the control of the AER, ZPA, and BMPs. Exogenous administration of recombinant Gremlin indicates that this protein is involved in the control of limb outgrowth. This function appears to be mediated by the neutralization of BMP function to maintain an active AER, to restrict the extension of the areas of programmed cell death and to confine chondrogenesis to the central core mesenchyme of the bud. At the stages of digit formation, gremlin is expressed in the proximal boundary of the interdigital mesoderm of the chick autopod. The anti-apoptotic influence of exogenous Gremlin, which results in the formation of soft tissue syndactyly in the chick, together with the expression of gremlin in the duck interdigital webs, indicates that Gremlin regulates the regression of the interdigital tissue. At later stages of limb development, gremlin is expressed in association with the differentiating skeletal pieces, muscles and the feather buds. The different expression of Gremlin in relation with other BMP antagonists present in the limb bud, such as Noggin, Chordin and Follistatin indicates that the functions of BMPs are regulated specifically by the different BMP antagonists, acting in a complementary fashion rather than being redundant signals.  (+info)

Adenovirus-mediated transfer of HST-1/FGF-4 gene protects mice from lethal irradiation. (6/271)

Intraperitoneal injection of a replication-deficient adenovirus containing the HST-1 (FGF-4) gene (Adex1HST-1) increased peripheral platelet counts in mice, and also effectively prevented experimentally induced thrombocytopenia. Here, we report the therapeutic potential of Adex1HST-1 on severely injured mice after exposure to otherwise lethal irradiation. Eighteen out of 20 mice that received Adex1HST-1 prior to gamma-irradiation (9 Gy) survived, while all the 20 mice with prior administration of control adenoviruses died after irradiation (P<0.0001). Hematological and histopathological analyses revealed that Adex1HST-1 acts as a potent protector against lethal irradiation, which causes injury of intestinal tract as well as myelosuppression in the bone marrow and spleen. These data demonstrate that the protective effects of administration of Adex1HST-1 against irradiation are superior to any other protective effects of cytokines against a lethal dose of irradiation, and that the pre-administration of Adex1HST-1 may be useful for lessening the side effects of currently used chemo- and radio-therapy against cancer.  (+info)

Normal limb development in conditional mutants of Fgf4. (7/271)

Fibroblast growth factors (FGFs) mediate multiple developmental signals in vertebrates. Several of these factors are expressed in limb bud structures that direct patterning of the limb. FGF4 is produced in the apical ectodermal ridge (AER) where it is hypothesized to provide mitogenic and morphogenic signals to the underlying mesenchyme that regulate normal limb development. Mutation of this gene in the germline of mice results in early embryonic lethality, preventing subsequent evaluation of Fgf4 function in the AER. A conditional mutant of Fgf4, based on site-specific Cre/loxP-mediated excision of the gene, allowed us to bypass embryonic lethality and directly test the role of FGF4 during limb development in living murine embryos. This conditional mutation was designed so that concomitant with inactivation of the Fgf4 gene by excision of all Fgf4-coding sequences, a reporter gene was activated in Fgf4-expressing cells, allowing assessment of the site-specific recombination reaction. Although a large body of evidence led us to predict that ablation of Fgf4 gene function in the AER of developing mice would result in abnormal limb outgrowth and patterning, we found that Fgf4 conditional mutants had normal limbs. Furthermore, expression patterns of Shh, Bmp2, Fgf8 and Fgf10 were normal in the limb buds of the conditional mutants. These findings indicate that the previously proposed FGF4-SHH feedback loop is not essential for coordination of murine limb outgrowth and patterning. We suggest that some of the roles currently attributed to FGF4 during early vertebrate limb development may be performed by other AER factors in vivo.  (+info)

Influence of FGF4 on digit morphogenesis during limb development in the mouse. (8/271)

Much of what we currently know about digit morphogenesis during limb development is deduced from embryonic studies in the chick. In this study, we used ex utero surgical procedures to study digit morphogenesis during mouse embryogenesis. Our studies reveal some similarities; however, we have found considerable differences in how the chick and the mouse autopods respond to experimentation. First, we are not able to induce ectopic digit formation from interdigital cells as a result of wounding or TGFbeta-1 application in the mouse, in contrast to what is observed in the chick. Second, FGF4, which inhibits the formation of ectopic digits in the chick, induces a digit bifurcation response in the mouse. We demonstrate with cell marking studies that this bifurcation response results from a reorganization of the prechondrogenic tip of the digit rudiment. The FGF4 effect on digit morphogenesis correlates with changes in the expression of a number of genes, including Msx1, Igf2, and the posterior members of the HoxD cluster. In addition, the bifurcation response is digit-specific, being restricted to digit IV. We propose that FGF4 is an endogenous signal essential for skeletal branching morphogenesis in the mouse. This work stresses the existence of major differences between the chick and the mouse in how digit morphogenesis is regulated and is thus consistent with the view that vertebrate digit evolution is a relatively recent event. Finally, we discuss the relationship between the digit IV bifurcation restriction and the placement of the metapterygial axis in the evolution of the tetrapod limb.  (+info)