Does sympathetic nerve discharge affect the firing of polymodal C-fibre afferents in humans? (65/9363)

Experimental and clinical studies in animals and humans have indicated that nociceptive nerve fibres can acquire sensitivity to norepinephrine after injury or chemical sensitization. To evaluate the functional relevance of such sensitization, we recorded the activity of single polymodal C-fibre afferents in healthy human volunteers and investigated whether intense physiological sympatho-excitation could affect their firing properties. This was studied before and after chemical sensitization of receptive fields by topical application of mustard oil. All afferent C fibres investigated (11 units in 10 subjects) were mechano-heat-sensitive, and four of seven fibres subjected to mustard oil were also chemosensitive. Putative sensitivity to sympathetic stimulation was investigated during low-frequency (0.25 Hz) electrical stimulation of the unit receptive field at a threshold intensity sufficient to evoke an action potential in the afferent fibre after every second to third stimulus. Following a prolonged period of silent rest, sympathoexcitation was elicited by forced mental arithmetic for 60 s, again followed by a long silent rest period. During stress, sympathetic nerve traffic increased to 625 +/- 146% of the control level, while firing of the afferent units remained unchanged. There was no sign of sympathetically mediated direct activation of afferent units and no change in the relative amounts of afferent activations caused by the background electrical stimulation. Results were similar for all units, both before (seven units in six subjects) and after (seven units in seven subjects) chemical sensitization of their cutaneous receptive field. The results suggest that if chemical sensitization of nociceptive C afferent neurons with mustard oil does induce sensitivity to noradrenaline in humans, it is not sufficient to make C nociceptive fibres respond to short-lasting physiological variations in sympathetic outflow.  (+info)

Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-1 protease inhibitor saquinavir by grapefruit juice components. (66/9363)

AIMS: Cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) are both expressed in the intestinal mucosa and present a barrier to oral drug delivery. CYP3A4 and P-gp share both overlapping tissue distribution and substrate specificity. Grapefruit juice interactions with CYP3A4 substrates are well documented and occur as a consequence of down regulation of intestinal CYP3A4. The aim of the present study was to screen grapefruit juice components against the CYP3A4-mediated metabolism and P-gp mediated transport of the HIV-1 protease inhibitor saquinavir. METHODS: Five grapefruit juice components: quercetin, naringin, naringenin, 6', 7'-dihydroxybergamottin and bergamottin were screened as potential inhibitors of the metabolism of saquinavir by human liver microsomes. The known CYP3A4 inhibitor ketoconazole was also screened for inhibitory potential. These compounds were also screened as modulators of P-gp activity by assessing the directional transport of saquinavir across Caco-2 cell monolayers which express P-gp. The effect of verapamil, a known modulator of P-gp function, was also determined in these cell lines. RESULTS: On preincubation, 6', 7'-dihydroxybergamottin and bergamottin inhibited the metabolism of saquinavir, with IC50 values of 0.33+/-0.23 muM and 0.74+/-0.13 muM, respectively (n=3). Ketoconazole achieved an IC50 of 0. 55+/-0.12 muM (n=4). The other compounds studied failed to reach IC50 at concentrations of up to 100 muM. The transport of saquinavir in the basolateral-->apical (BL-->AP) direction exceeded that in the apical -->basolateral direction (AP-->BL), with apparent permeability coefficients of 199.2+/-15.8x10-7 cm s-1 and 8.00+/-1. 13x10-7 cm s-1, respectively (n=3) which is indicative of a polarized efflux mechanism. The ratio of BL-->AP/AP-->BL for saquinavir was 25, but in the presence of verapamil and ketoconazole this ratio was reduced to 3.6 and 4.0, respectively (n=3), indicating extensive inhibition of P-gp mediated saquinavir efflux. Of the grapefruit juice components studied only naringin and 6', 7'-dihydroxybergamottin had any appreciable effect, reducing the ratio to 7.6 and 7.1, respectively (n=3); but this was due solely to increased AP-->BL transport. CONCLUSIONS: Grapefruit juice components inhibit CYP3A4-mediated saquinavir metabolism and also modulate, to a limited extent, P-gp mediated saquinavir transport in Caco-2 cell monolayers. The in vivo effects of grapefruit juice coadministration are most likely the result of effects on CYP3A4 (inhibition and down regulation) and only to a minor extent on modulation of P-gp function.  (+info)

Possible enhancement of the first-pass metabolism of phenacetin by ingestion of grape juice in Chinese subjects. (67/9363)

AIMS: This serendipitous study revealed an unexpected effect of Jufeng grape juice on the CYP1A2-mediated metabolism of phenacetin. Investigation of the inhibition of CYP1A2 by grapefruit juice was involved but a translation error led to the grape juice substitution. METHODS: Twelve healthy subjects took a single oral dose of phenacetin (900 mg) on two randomized occasions together with 200 ml water or grape juice. Plasma phenacetin and paracetamol concentrations were assessed by h.p.l.c. RESULTS: Ingestion of grape juice was associated with reduced plasma phenacetin concentrations, while paracetamol levels were unaffected. Paracetamol to phenacetin AUC ratios increased from 13.9+/-3.1 to 24.3+/-3.8 after ingestion of grape juice. CONCLUSIONS: These findings suggest enhanced first-pass metabolism of phenacetin, due to CYP1A2 activation by grape juice or to desaturation of CYP1A2 isoenzymes secondary to a slower rate of phenacetin absorption.  (+info)

Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. (68/9363)

BACKGROUND: Current interest in the role of functional foods in weight control has focused on plant ingredients capable of interfering with the sympathoadrenal system. OBJECTIVE: We investigated whether a green tea extract, by virtue of its high content of caffeine and catechin polyphenols, could increase 24-h energy expenditure (EE) and fat oxidation in humans. DESIGN: Twenty-four-hour EE, the respiratory quotient (RQ), and the urinary excretion of nitrogen and catecholamines were measured in a respiratory chamber in 10 healthy men. On 3 separate occasions, subjects were randomly assigned among 3 treatments: green tea extract (50 mg caffeine and 90 mg epigallocatechin gallate), caffeine (50 mg), and placebo, which they ingested at breakfast, lunch, and dinner. RESULTS: Relative to placebo, treatment with the green tea extract resulted in a significant increase in 24-h EE (4%; P < 0.01) and a significant decrease in 24-h RQ (from 0.88 to 0.85; P < 0.001) without any change in urinary nitrogen. Twenty-four-hour urinary norepinephrine excretion was higher during treatment with the green tea extract than with the placebo (40%, P < 0.05). Treatment with caffeine in amounts equivalent to those found in the green tea extract had no effect on EE and RQ nor on urinary nitrogen or catecholamines. CONCLUSIONS: Green tea has thermogenic properties and promotes fat oxidation beyond that explained by its caffeine content per se. The green tea extract may play a role in the control of body composition via sympathetic activation of thermogenesis, fat oxidation, or both.  (+info)

Identification of zerumbone in Zingiber zerumbet Smith as a potent inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus activation. (69/9363)

Zerumbone was isolated from the rhizomes of Zingiber zerumbet Smith as a potent inhibitor of tumor promoter 12-O-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus activation. The IC50 value of zerumbone (0.14 microM) is noticeably lower than those of the anti-tumor promoters we have hitherto obtained. Interestingly, alpha-humulene lacking the carbonyl group at the 8-position in zerumbone was inactive (IC50 > 100 microM), while 8-hydroxy-alpha-humulune was markedly active (IC50 = 0.95 microM).  (+info)

Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. (70/9363)

The aim of this study was to design a convenient, specific, sensitive, and continuous lipase activity assay using natural long-chain triacylglycerols (TAGs). Oil was extracted from Parinari glaberrimum seed kernels and the purified TAGs were used as a substrate for detecting low levels of lipase activities. The purified TAGs are naturally fluorescent because more than half of the fatty acids from Parinari oil are known to contain 9,11,13, 15-octadecatetraenoic acid (parinaric acid) in its esterified form. The presence of detergents (sodium taurodeoxycholate, CHAPS, Sulfobetaine SB12, Tween 20, Brij 35, Dobanol, n-dodecylglucoside) above their critical micellar concentration dramatically increases the fluorescence of the parinaric acid released by various lipases. This increase in the fluorescence intensity is linear with time and proportional to the amount of lipase added. This new method, performed under non-oxidative conditions, was applied successfully to detecting low lipase levels in crude protein extracts from plant seeds and could be scaled down to microtiterplate measurements. Quantities as low as 0.1 ng of pure pancreatic lipase could be detected under standard conditions (pH 8). Lipase activity can also be assayed in acidic media (pH 5) using human gastric lipase. This simple and continuous assay is compatible with a high sample throughput and might be applied to detecting true lipase activities in various biological samples.  (+info)

Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. (71/9363)

Phytoalexins are low molecular weight antimicrobial compounds that are synthesized in response to pathogen attack. The phytoalexin camalexin, an indole derivative, is produced by Arabidopsis in response to infection with the bacterial pathogen Pseudomonas syringae. The phytoalexin deficient 3 (pad3) mutation, which causes a defect in camalexin production, has no effect on resistance to P. syringae but compromises resistance to the fungal pathogen Alternaria brassicicola. We have now isolated PAD3 by map-based cloning. The predicted PAD3 protein appears to be a cytochrome P450 monooxygenase, similar to those from maize that catalyze synthesis of the indole-derived secondary metabolite 2,4-dihydroxy-1, 4-benzoxazin-3-one. The expression of PAD3 is tightly correlated with camalexin synthesis and is regulated by PAD4 and PAD1. On the basis of these findings, we conclude that PAD3 almost certainly encodes an enzyme required for camalexin biosynthesis. Moreover, these results strongly support the idea that camalexin does not play a major role in plant resistance to P. syringae infection, although it is involved in resistance to a fungal pathogen.  (+info)

Inhibitory mechanism of aloe single component (alprogen) on mediator release in guinea pig lung mast cells activated with specific antigen-antibody reactions. (72/9363)

We previously reported that the glycoprotein extracted from aloe strongly inhibited the mediator releases caused by the activation of guinea pig lung mast cells. Therefore, this study aimed to purify a single component that has an antiallergic effect from crude aloe extract and then to assess the effects of aloe single component (alprogen) on the mechanism of mediator releases caused by the mast cell activation. We purified aloe extracts by using various columns. We also purified mast cells from guinea pig lung tissues by using enzyme digestion, rough and discontinuous density Percoll gradient. Mast cells were sensitized with IgG(1) (anti-ovalbumin) and challenged with ovalbumin. Histamine was assayed by using a fluorometric analyzer and leukotrienes by radioimmunoassay. [Ca(2+)](i) level was analyzed by using a confocal laser scanning microscope. Protein kinase activity was determined by the protein phosphorylated with [gamma-(32)P]ATP. The phospholipase D activity was assessed by the labeled phosphatidylalcohol. The amount of mass 1,2-diacylglycerol (DAG) was measured by the [(3)H]DAG produced when prelabeled with [(3)H]myristic acid. Phospholipase A(2) activity was determined by measuring the lyso-phosphatidylcholine released from the labeled phospholipids. Alprogen significantly decreased histamine and leukotriene releases and blocked completely Ca(2+) influx during mast cell activation. The protein kinase C and phospholipase D activities were decreased by alprogen in dose-dependent manner. Alprogen inhibited mass DAG formation and the phospholipase A(2) activity during mast cell activation. The data suggest that alprogen purified from aloe inhibits multiple signals as well as blocking Ca(2+) influx caused by mast cells activated with specific antigen-antibody reactions and that then the inhibition of histamine and leukotriene release follows.  (+info)