The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture. (1/724)

We have examined five human breast cancer cell lines in continuous tissue culture for androgen responsiveness. One of these cell lines shows a 2- to 4-fold stimulation of thymidine incorporation into DNA, apparent as early as 10 hr following androgen addition to cells incubated in serum-free medium. This stimulation is accompanied by an acceleration in cell replication. Antiandrogens [cyproterone acetate (6-chloro-17alpha-acetate-1,2alpha-methylene-4,6-pregnadiene-3,20-dione) and R2956 (17beta-hydroxy-2,2,17alpha-trimethoxyestra-4,9,11-triene-1-one)] inhibit both protein and DNA synthesis below control levels and block androgen-mediated stimulation. Prolonged incubation (greater than 72 hr) in antiandrogen is lethal. The MCF- cell line contains high-affinity receptors for androgenic steroids demonstrable by sucrose density gradients and competitive protein binding analysis. By cross-competition studies, androgen receptors are distinguishable from estrogen receptors also found in this cell line. Concentrations of steroid that saturate androgen receptor sites in vitro are about 1000 times lower than concentrations that maximally stimulate the cells. Changes in quantity and affinity of androgen binding to intact cells at 37 degrees as compared with usual binding techniques using cytosol preparation at 0 degrees do not explain this difference between dissociation of binding and effect. However, this difference can be explained by conversion of [3H]-5alpha-dihydrotestosterone to 5alpha-androstanediol and more polar metabolites at 37 degrees. An examination of incubation media, cytoplasmic extracts and crude nuclear pellets reveals probable conversion of [3H]testosterone to [3H]-5alpha-dihydrotestosterone. Our data provide compelling evidence that some human breast cancer, at least in vitro, may be androgen dependent.  (+info)

Blind smell: brain activation induced by an undetected air-borne chemical. (2/724)

EEG and behavioural evidence suggests that air-borne chemicals can affect the nervous system without being consciously detected. EEG and behaviour, however, do not specify which brain structures are involved in chemical sensing that occurs below a threshold of conscious detection. Here we used functional MRI to localize brain activation induced by high and low concentrations of the air-borne compound oestra-1,3,5(10),16-tetraen-3yl acetate. Following presentations of both concentrations, eight of eight subjects reported verbally that they could not detect any odour (P = 0.004). Forced choice detection performed during the presentations revealed above-chance detection of the high concentration, but no better than chance detection of the low concentration compound. Both concentrations induced significant brain activation, primarily in the anterior medial thalamus and inferior frontal gyrus. Activation in the inferior frontal gyrus during the high concentration condition was significantly greater in the right than in the left hemisphere (P = 0.03). A trend towards greater thalamic activation was observed for the high concentration than the low concentration compound (P = 0.08). These findings localize human brain activation that was induced by an undetectable air-borne chemical (the low concentration compound).  (+info)

17beta-oestradiol increases intracellular Ca2+ concentration in rat enterocytes. Potential role of phospholipase C-dependent store-operated Ca2+ influx. (3/724)

The involvement of the phospholipase C (PLC) pathway in the non-genomic regulation of duodenal cell Ca2+ concentration by 17beta-oestradiol was investigated. The PLC inhibitors neomycin (0.5 mM) and U-73122 (2 microM) suppressed the stimulatory effect of 0.1 nM 17beta-oestradiol on the 45Ca2+ influx into enterocytes isolated from rat duodenum. The hormone (1 pM to 10 nM) increased the formation of 1,2-diacylglycerol in a biphasic pattern, characterized by an early peak at 45 s (+82%) and a later peak at 5 min (+46%). Both PLC inhibitors suppressed the first peak but were unable to block the 17beta-oestradiol effect at 5 min. 17beta-Oestradiol also increased the generation of inositol 1,4,5-trisphosphate within 15 s, with maximal stimulation at 30 s. 17beta-Oestradiol induced a rapid (30 s) and sustained (up to 5 min) increase in the intracellular Ca2+ concentration ([Ca2+]i) of fura 2-loaded enterocytes. The fast rise in [Ca2+]i was specific because other sex steroid hormones were without effect and could be blocked to a great extent by U-73122 (by 86% at 1 min). The effects of 17beta-oestradiol on enterocyte [Ca2+]i were decreased significantly (by 75%) in a Ca2+-free extracellular medium but a pronounced increase in [Ca2+]i was obtained after readmission of Ca2+ to the medium. The latter change was suppressed by 10 microM La3+, whereas nitrendipine (1 microM) and verapamil (10 microM) separately were without effect. The permeability of the 17beta-oestradiol-induced Ca2+ influx pathway to Mn2+ was increased 2.8-fold by treatment with oestrogen. These results suggest the operation of a PLC-dependent store-operated Ca2+ channel mechanism in 17beta-oestradiol regulation of enterocyte extracellular Ca2+ influx.  (+info)

Disruption of gap junctional communication by the platelet-derived growth factor is mediated via multiple signaling pathways. (4/724)

The platelet-derived growth factor (PDGF) mediates its cellular functions via activation of its receptor tyrosine kinase followed by the recruitment and activation of several signaling molecules. These signaling molecules then initiate specific signaling cascades, finally resulting in distinct physiological effects. To delineate the PDGF signaling pathway responsible for the disruption of gap junctional communication (GJC), wild-type PDGF receptor beta (PDGFRbeta) and a series of PDGFRbeta mutants were expressed in T51B rat liver epithelial cells. In cells expressing wild-type PDGFRbeta, PDGF induced disruption of GJC and phosphorylation of a gap junctional protein, connexin-43 (Cx43), which required activation of mitogen-activated protein kinase, although involvement of additional factors was also evident. In the F5 mutant lacking binding sites for phosphatidylinositol 3-kinase, GTPase-activating protein, SHP-2, and phospholipase Cgamma1 (PLCgamma1), PDGF induced mitogen-activated protein kinase, but failed to affect GJC or Cx43, indicating involvement of additional signals presumably initiated by one or more of the mutated binding sites. Examination of the single-site mutants revealed that PDGF effects were not mediated via a single signaling component. This was confirmed by the "add-back" mutants, which showed that restoration of either SHP-2 or PLCgamma1 binding was sufficient to propagate the GJC inhibitory actions of PDGF. Further analysis showed that activation of PLCgamma1 is involved in Cx43 phosphorylation, which surprisingly failed to correlate with GJC blockade. The results of our study demonstrate that PDGF-induced disruption of GJC can be mediated by multiple signaling pathways and requires participation of multiple components.  (+info)

Lipoprotein(a) stimulates growth of human mesangial cells and induces activation of phospholipase C via pertussis toxin-sensitive G proteins. (5/724)

BACKGROUND: Renal disease is commonly associated with hyperlipidemia and correlates with glomerular accumulation of atherogenic lipoproteins, for example, lipoprotein(a) [Lp(a)], and mesangial hypercellularity. Specific binding of Lp(a) to mesangial cells and induction of c-myc and c-fos expression has been demonstrated. Therefore, in this study, we investigated a possible growth stimulatory effect and mode of action of Lp(a) in human mesangial cells. METHODS: Lp(a) was purified from the regenerate fluid of a dextran sulfate column-based low-density lipoprotein apheresis system. Human mesangial cells were isolated by a sequential sieving technique from patients undergoing tumor nephrectomy. DNA synthesis was measured by [3H]-thymidine incorporation. The intracellular calcium concentration ([Ca2+]i) was determined by Fura 2-fluorescence, and inositol 1,4,5-trisphosphate (1,4,5-IP3) concentration was measured by a radioreceptor assay. RESULTS: The data show that Lp(a) bound to the cells with a Kd of 17.0 micrograms/ml and increased DNA synthesis and cell proliferation. Lp(a) caused a rapid increase in 1,4,5-IP3 and [Ca2+]i via a pertussis toxin-sensitive mechanism. The phospholipase C (PLC) inhibitor U73122 abolished Lp(a)-induced cell proliferation. In contrast, vasopressin-induced increase in 1,4,5-IP3 and [Ca2+]i was pertussis toxin insensitive. CONCLUSION: This study revealed that Lp(a) stimulates growth of human mesangial cells. Lp(a)-induced signaling involves binding to a receptor and stimulation of PLC via Gi proteins. Stimulation of PLC appears to be essential for the growth stimulatory effect of Lp(a). Whether these effects of Lp(a) contribute to the pathophysiology of renal disease needs to be determined.  (+info)

Angiotensin II-mediated signal transduction events in cystic fibrosis pancreatic duct cells. (6/724)

Different signal transduction pathways, i.e. Ca2+- and cAMP-dependent, involved in mediating the effects of angiotensin II (AII) were investigated separately using the short-circuit current (Isc) technique and radioimmunoassay (RIA) in a cystic fibrosis pancreatic cell line (CFPAC-1) which exhibits defective cAMP-dependent but intact Ca2+-dependent anion secretion. The AII-induced Isc could be inhibited by the specific antagonist for AT1, losartan (1 microM), but not the antagonist for AT2, PD123177 (up to 10 microM). The AII-induced Isc was also reduced by the treatment of the cells with a Ca2+ chelator, BAPTA-AM (100 microM), indicating a dependence of the AII-induced anion secretion on the intracellular Ca2+. Treatment of the cells with pertussis toxin (0.1 microg/ml) or a phospholipase C (PLC) inhibitor, U73122 (5 microM), resulted in a substantial reduction in the AII-induced Isc indicating involvement of Gi and PLC in the Ca2+-dependent anion secretion. RIA measurements showed that AII stimulated an increase in cAMP production which could be reduced by losartan, pertussis toxin and U73122 but not BAPTA-AM. In addition, inhibitors of cyclooxygenase, indomethacin (10 microM) and piroxicam (10 microM), did not have any effect on the AII-induced cAMP production, excluding the involvement of prostaglandins. Our results suggest that both AII-stimulated cAMP and Ca2+-dependent responses are mediated by the AT1 receptor and Gi-coupled PLC pathway. However, the AII-stimulated cAMP production in CFPAC-1 cells is not dependent on Ca2+ or the formation of prostaglandins.  (+info)

The phospholipase C inhibitor U73122 inhibits phorbol ester-induced platelet activation. (7/724)

Activation of phospholipase C (PLC) is a central component of the signal transduction process in numerous cells, including platelets. U73122 has been widely used as a selective PLC inhibitor. In the present study, the effects of U73122 on platelet function have been further examined. Platelets were stimulated with collagen (via PLC-gamma), the stable thromboxane mimetic U46619 (via PLC-beta), or phorbol myristate acetate (PMA) via protein kinase C (PKC). Consistent with inhibition of PLC, U73122 inhibited platelet aggregation and [3H]-serotonin release in response to collagen and U46619 in a concentration-dependent manner. Similarly, U73122 blocked collagen-induced release of thromboxane A2. U73122 also inhibited U46619-induced [32P]phosphatidic acid production and phosphorylation of the major PKC substrate, pleckstrin. U73122 had no effect on PMA-induced pleckstrin phosphorylation, [3H]-serotonin release, or intracellular vacuole formation. However, U73122 did inhibit PMA-induced platelet aggregation and fibrinogen binding. Overall, these results suggest that U73122, in addition to its inhibition of PLC, also affects PKC-independent events that interfere with platelet aggregation.  (+info)

Bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine cultured tracheal epithelial cells. (8/724)

1. Experiments were designed to differentiate the mechanisms and subtype of kinin receptors mediating the changes in intracellular Ca2+ concentration ([Ca2+]i) induced by bradykinin (BK) in canine cultured tracheal epithelial cells (TECs). 2. BK and Lys-BK caused an initial transient peak of [Ca2+]i in a concentration-dependent manner, with half-maximal stimulation (pEC50) obtained at 7.70 and 7.23, respectively. 3. Kinin B2 antagonists Hoe 140 (10 nM) and [D-Arg0, Hyp3, Thi5,8, D-Phe7]-BK (1 microM) had high affinity in antagonizing BK-induced Ca2+ response with pKB values of 8.90 and 6.99, respectively. 4. Pretreatment of TECs with pertussis toxin (100 ng ml(-1)) or cholera toxin (10 microg ml(-1)) for 24 h did not affect the BK-induced IP accumulation and [Ca2+]i changes in TECs. 5. Removal of Ca2+ by the addition of EGTA or application of Ca2+-channel blockers, verapamil, diltiazem, and Ni2+, inhibited the BK-induced IP accumulation and Ca2+ mobilization, indicating that Ca2+ influx was required for the BK-induced responses. 6. Addition of thapsigargin (TG), which is known to deplete intracellular Ca2+ stores, transiently increased [Ca2+]i in Ca2+-free buffer and subsequently induced Ca2+ influx when Ca2+ was re-added to this buffer. Pretreatment of TECs with TG completely abolished BK-induced initial transient [Ca2+]i, but had slight effect on BK-induced Ca2+ influx. 7. Pretreatment of TECs with SKF96365 and U73122 inhibited the BK-induced Ca2+ influx and Ca2+ release, consistent with the inhibition of receptor-gated Ca2+-channels and phospholipase C in TECs, respectively. 8. These results demonstrate that BK directly stimulates kinin B2 receptors and subsequently phospholipase C-mediated IP accumulation and Ca2+ mobilization via a pertussis toxin-insensitive G protein in canine TECs. These results also suggest that BK-induced Ca2+ influx into the cells is not due to depletion of these Ca2+ stores, as prior depletion of these pools by TG has no effect on the BK-induced Ca2+ influx that is dependent on extracellular Ca2+ in TECs.  (+info)