Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG homologue. (65/42092)

Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been identified through genetic analysis. Sequence comparison of the Bacillus chromosome identified a potential homologue of SecG, termed YvaL. A chromosomal disruption of the yvaL gene results in mild cold sensitivity and causes a beta-lactamase secretion defect. The cold sensitivity is exacerbated by overexpression of the secretory protein alpha-amylase, whereas growth and beta-lactamase secretion are restored by coexpression of yvaL or the E. coli secG gene. These results indicate that the yvaL gene codes for a protein that is functionally homologous to SecG.  (+info)

Cloning of mnuA, a membrane nuclease gene of Mycoplasma pulmonis, and analysis of its expression in Escherichia coli. (66/42092)

Membrane nucleases of mycoplasmas are believed to play important roles in growth and pathogenesis, although no clear evidence for their importance has yet been obtained. As a first step in defining the function of this unusual membrane activity, studies were undertaken to clone and analyze one of the membrane nuclease genes from Mycoplasma pulmonis. A novel screening strategy was used to identify a recombinant lambda phage expressing nuclease activity, and its cloned fragment was analyzed. Transposon mutagenesis was used to identify an open reading frame of 1,410 bp, which coded for nuclease activity in Escherichia coli. This gene coded for a 470-amino-acid polypeptide of 53,739 Da and was designated mnuA (for "membrane nuclease"). The MnuA protein contained a prolipoprotein signal peptidase II recognition sequence along with an extensive hydrophobic region near the amino terminus, suggesting that the protein may be lipid modified or that it is anchored in the membrane by this membrane-spanning region. Antisera raised against two MnuA peptide sequences identified an M. pulmonis membrane protein of approximately 42 kDa by immunoblotting, which corresponded to a trypsin-sensitive nucleolytic band of the same size. Maxicell experiments with E. coli confirmed that mnuA coded for a nuclease of unknown specificity. Hybridization studies showed that mnuA sequences are found in few Mycoplasma species, suggesting that mycoplasma membrane nucleases display significant sequence variation within the genus Mycoplasma.  (+info)

The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. (67/42092)

Vibrio cholerae is a highly motile bacterium which possesses a single polar flagellum as a locomotion organelle. Motility is thought to be an important factor for the virulence of V. cholerae. The genome sequencing project of this organism is in progress, and the genes that are highly homologous to the essential genes of the Na+-driven polar flagellar motor of Vibrio alginolyticus were found in the genome database of V. cholerae. The energy source of its flagellar motor was investigated. We examined the Na+ dependence and the sensitivity to the Na+ motor-specific inhibitor of the motility of the V. cholerae strains and present the evidence that the polar flagellar motor of V. cholerae is driven by an Na+ motive force.  (+info)

Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. (68/42092)

The mutual phylogenetic relationships of dermatophytes of the genera Trichophyton, Microsporum, and Epidermophyton were demonstrated by using internal transcribed spacer 1 (ITS1) region ribosomal DNA sequences. Trichophyton spp. and Microsporum spp. form a cluster in the phylogenetic tree with Epidermophyton floccosum as an outgroup, and within this cluster, all Trichophyton spp. except Trichophyton terrestre form a nested cluster (100% bootstrap support). Members of dermatophytes in the cluster of Trichophyton spp. were classified into three groups with ITS1 homologies, with each of them being a monophyletic cluster (100% bootstrap support). The Arthroderma vanbreuseghemii-Arthroderma simii group consists of A. vanbreuseghemii, A. simii, Trichophyton mentagrophytes isolates from humans, T. mentagrophytes var. quinckeanum, Trichophyton tonsurans, and Trichophyton schoenleinii. Arthroderma benhamiae, T. mentagrophytes var. erinacei, and Trichophyton verrucosum are members of the Arthroderma benhamiae group. Trichophyton rubrum and Trichophyton violaceum form the T. rubrum group. This suggests that these "species" of dermatophytes have been overclassified. The ITS1 sequences of 11 clinical isolates were also determined to identify the species, and all strains were successfully identified by comparison of their base sequences with those in the ITS1 DNA sequence database.  (+info)

Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. (69/42092)

Restriction fragment length polymorphisms (RFLPs) identified in the ribosomal-DNA (rDNA) repeat were used for molecular strain differentiation of the dermatophyte fungus Trichophyton rubrum. The polymorphisms were detected by hybridization of EcoRI-digested T. rubrum genomic DNAs with a probe amplified from the small-subunit (18S) rDNA and adjacent internal transcribed spacer (ITS) regions. The rDNA RFLPs mapped to the nontranscribed spacer (NTS) region of the rDNA repeat and appeared similar to those caused by short repetitive sequences in the intergenic spacers of other fungi. Fourteen individual RFLP patterns (DNA types A to N) were recognized among 50 random clinical isolates of T. rubrum. A majority of strains (19 of 50 [38%]) were characterized by one RFLP pattern (DNA type A), and four types (DNA types A to D) accounted for 78% (39 of 50) of all strains. The remaining types (DNA types E to N) were represented by one or two isolates only. A rapid and simple method was also developed for molecular species identification of dermatophyte fungi. The contiguous ITS and 5.8S rDNA regions were amplified from 17 common dermatophyte species by using the universal primers ITS 1 and ITS 4. Digestion of the amplified ITS products with the restriction endonuclease MvaI produced unique and easily identifiable fragment patterns for a majority of species. However, some closely related taxon pairs, such as T. rubrum-T. soudanense and T. quinkeanum-T. schoenlenii could not be distinguished. We conclude that RFLP analysis of the NTS and ITS intergenic regions of the rDNA repeat is a valuable technique both for molecular strain differentiation of T. rubrum and for species identification of common dermatophyte fungi.  (+info)

Identification of nonlipophilic corynebacteria isolated from dairy cows with mastitis. (70/42092)

Nonlipophilic corynebacteria associated with clinical and subclinical mastitis in dairy cows were found to belong to four species: Corynebacterium amycolatum, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis, and Corynebacterium minutissimum. These species may easily be confused. However, clear-cut differences between C. ulcerans and C. pseudotuberculosis were found in their acid production from maltotriose and ethylene glycol, susceptibility to vibriostatic agent O129, and alkaline phosphatase. Absence of growth at 20 degrees C and lack of alpha-glucosidase and 4MU-alpha-D-glycoside hydrolysis activity differentiated C. amycolatum from C. pseudotuberculosis and C. ulcerans. The mastitis C. pseudotuberculosis strains differed from the biovar equi and ovis reference strains and from caprine field strains in their colony morphologies and in their reduced inhibitory activity on staphylococcal beta-hemolysin. C. amycolatum was the most frequently isolated nonlipophilic corynebacterium.  (+info)

Identification of Mycobacterium kansasii by using a DNA probe (AccuProbe) and molecular techniques. (71/42092)

The newly formulated Mycobacterium kansasii AccuProbe was evaluated, and the results obtained with the new version were compared to the results obtained with the old version of this test by using 116 M. kansasii strains, 1 Mycobacterium gastri strain, and 19 strains of several mycobacterial species. The sensitivity of this new formulation was 97.4% and the specificity was 100%. Still, three M. kansasii strains were missed by this probe. To evaluate the variability within the species, genetic analyses of the hsp65 gene, the spacer sequence between the 16S and 23S rRNA genes, and the 16S rRNA gene of several M. kansasii AccuProbe-positive strains as well as all AccuProbe-negative strains were performed. Genetic analyses of the one M. gastri strain from the comparative assay and of two further M. gastri strains were included because of the identity of the 16S rRNA gene in M. gastri to that in M. kansasii. The data confirmed the genetic heterogeneity of M. kansasii. Furthermore, a subspecies with an unpublished hsp65 restriction pattern and spacer sequence was described. The genetic data indicate that all M. kansasii strains missed by the AccuProbe test belong to one subspecies, the newly described subspecies VI, as determined by the hsp65 restriction pattern and the spacer sequence. Since the M. kansasii strains that are missed are rare and all M. gastri strains are correctly negative, the new formulated AccuProbe provides a useful tool for the identification of M. kansasii.  (+info)

Identification and characterization of IS2404 and IS2606: two distinct repeated sequences for detection of Mycobacterium ulcerans by PCR. (72/42092)

Molecular analysis of Mycobacterium ulcerans has revealed two new insertion sequences (ISs), IS2404 and IS2606. IS2404 was identified by complete sequencing of a previously described repetitive DNA segment from M. ulcerans. This element is 1,274 bp long, contains 12-bp inverted repeats and a single open reading frame (ORF) potentially encoding a protein of 327 amino acids (aa), and apparently generates 7-bp direct repeats upon transposition. Amino acid similarity was found between the putative transposase and those encoded by ISs in other bacterial sequences from Aeromonas salmonicida (AsIs1), Escherichia coli (H repeat element), Vibrio cholerae (VcIS1), and Porphyromonas gingivalis (PGIS2). The second IS, IS2606, was discovered by sequence analysis of a HaeIII fragment of M. ulcerans genomic DNA containing a repetitive sequence. This element is 1,404 bp long, with 12-bp inverted repeats and a single ORF potentially encoding a protein of 445 aa. Database searches revealed a high degree of amino acid identity (70%) with the putative transposase of IS1554 from M. tuberculosis. Significant amino acid identity (40%) was also observed with transposases from several other microorganisms, including Rhizobium meliloti (ISRm3), Burkholderia cepacia (IS1356), Corynebacterium diphtheriae, and Yersinia pestis. PCR screening of DNA from 45 other species of mycobacteria with primers for IS2404 confirm that this element is found only in M. ulcerans. However, by PCR, IS2606 was also found in Mycobacterium lentiflavum, another slow-growing member of the genus Mycobacterium that is apparently genetically distinct from M. ulcerans. Testing the sensitivity of PCR based on IS2404 and IS2606 primers demonstrated the ability to detect 0.1 and 1 M. ulcerans genome equivalents, respectively. The ability to detect small numbers of cells by using two gene targets will be particularly useful for analyzing environmental samples, where there may be low concentrations of M. ulcerans among large numbers of other environmental mycobacteria.  (+info)