Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. (1/1734)

The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry 37:6033-6040, 1998). The biological relevance of the N-glycosylase-associated AP lyase activity in the repair of abasic sites is not well understood, and the majority of AP sites in vivo are thought to be processed by Apn1p, the major AP endonuclease in yeast. We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione. The additional disruption of the RAD52 gene in the ntg1 ntg2 apn1 triple mutant confers a high degree of sensitivity to these agents. The hyper-rec and mutator phenotypes of the ntg1 ntg2 apn1 triple mutant are further enhanced by the elimination of the nucleotide excision repair pathway. In addition, removal of either the lesion bypass (Rev3p-dependent) or recombination (Rad52p-dependent) pathway specifically enhances the hyper-rec or mutator phenotype, respectively. These data suggest that multiple pathways with overlapping specificities are involved in the removal of, or tolerance to, spontaneous DNA damage in S. cerevisiae. In addition, the fact that these responses to induced and spontaneous damage depend upon the simultaneous loss of Ntg1p, Ntg2p, and Apn1p suggests a physiological role for the AP lyase activity of Ntg1p and Ntg2p in vivo.  (+info)

Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. (2/1734)

Repair of a double-strand break (DSB) by homologous recombination depends on the invasion of a 3'-ended strand into an intact template sequence to initiate new DNA synthesis. When the end of the invading DNA is not homologous to the donor, the nonhomologous sequences must be removed before new synthesis can begin. In Saccharomyces cerevisiae, the removal of these ends depends on both the nucleotide excision repair endonuclease Rad1p/Rad10p and the mismatch repair proteins Msh2p/Msh3p. In rad1 or msh2 mutants, when both ends of the DSB have nonhomologous ends, repair is reduced approximately 90-fold compared to a plasmid with perfect ends; however, with only one nonhomologous end, repair is reduced on average only 5-fold. These results suggest that yeast has an alternative, but less efficient, way to remove a nonhomologous tail from the second end participating in gene conversion. When the removal of one nonhomologous end is impaired in rad1 and msh2 mutants, there is also a 1-hr delay in the appearance of crossover products of gene conversion, compared to noncrossovers. We interpret these results in terms of the formation and resolution of alternative intermediates of a synthesis-dependent strand annealing mechanism.  (+info)

The human PMS2L proteins do not interact with hMLH1, a major DNA mismatch repair protein. (3/1734)

The human PMS2 gene encodes one of the bacterial mutL homologs that is associated with hereditary nonpolyposis colorectal cancer (HNPCC). One of the interesting features of the hPMS2 gene is that it is part of a multiple gene family which is localized on chromosome bands 7p22, 7p12-p13, 7q11, and 7q22. Here we report four newly identified hPMS2-like (PMS2L) genes. All four novel members of the PMS2L gene family encode relatively short polypeptides composed of the amino-terminal portion of hPMS2 and are expressed ubiquitously except in the heart. To clarify whether the PMS2L polypeptides contribute to the DNA mismatch repair (MMR) pathway through an interaction with hMLH1, we have performed a yeast two-hybrid assay and an immunoprecipitation study using an hPMS2 mutant cell line, HEC-1-A. Our results clearly indicate that hMLH1 does not interact with two representative PMS2Ls, whereas the carboxyl-terminal portion of hPMS2, not the amino-terminal portion, does interact with hMLH1. Thus, PMS2Ls are not likely to participate in the MMR pathway through association with hMLH1; they must play some other roles in the living cells.  (+info)

Alterations in the CSB gene in three Italian patients with the severe form of Cockayne syndrome (CS) but without clinical photosensitivity. (4/1734)

Cockayne syndrome (CS) is a rare autosomal recessive disorder characterized by postnatal growth failure, mental retardation and otherwise clinically heterogeneous features which commonly include cutaneous photosensitivity. Cultured cells from sun-sensitive CS patients are hypersensitive to ultraviolet (UV) light and, following UV irradiation, are unable to restore RNA synthesis rates to normal levels. This has been attributed to a specific deficiency in CS cells in the ability to carry out preferential repair of damage in actively transcribed regions of DNA. We report here a cellular and molecular analysis of three Italian CS patients who were of particular interest because none of them was sun-sensitive, despite showing most of the features of the severe form of CS, including the characteristic cellular sensitivity to UV irradiation. They all were altered in the CSB gene. The genetically related patients CS1PV and CS3PV were homozygous for the C1436T transition resulting in the change Arg453opal. Patient CS2PV was a compound heterozygote for two new causative mutations, insertions of an A at position 1051 and of TGTC at 2053, leading to truncated proteins of 367 and 681 amino acids. These mutations result in severely truncated proteins, as do many of those that we previously identified in several sun-sensitive CS-B patients. These observations confirm that the CSB gene is not essential for viability and cell proliferation, an important issue to be considered in any speculation on the recently proposed additional function of the CSB protein in transcription. Our investigations provide data supporting the notion that other factors, besides the site of the mutation, influence the type and severity of the CS clinical features.  (+info)

Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. (5/1734)

Error-free repair by homologous recombination of DNA double-strand breaks induced by ionizing radiation (IR) requires the Rad52 group proteins, including Rad51 and Rad54, in the yeast Saccharomyces cerevisiae [1]. The formation of a 'joint' molecule between the damaged DNA and the homologous repair template is a key step in recombination mediated by Rad51 and stimulated by Rad54 [2] [3] [4] [5]. Mammalian homologs of Rad51 and Rad54 have been identified [2] [3] [6]. Here, we demonstrate that mouse Rad54 (mRad54) formed IR-induced nuclear foci that colocalized with mRad51. Interaction between mRad51 and mRad54 was induced by genotoxic stress, but only when lesions that required mRad54 for their repair were formed. Interestingly, mRad54 was essential for the formation of IR-induced mRad51 foci. Rad54 belongs to the SWI2/SNF2 protein family, members of which modulate protein-DNA interactions in an ATP-driven manner [7]. Results of a topological assay suggested that purified human Rad54 (hRad54) protein can unwind double-stranded (ds) DNA at the expense of ATP hydrolysis. Unwinding of the homologous repair template could promote the formation or stabilization of hRad51-mediated joint molecules. Rad54 appears to be required downstream of other Rad52 group proteins, such as Rad52 and the Rad55-Rad57 heterodimer, that assist Rad51 in interacting with the broken DNA [2] [3] [4].  (+info)

RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. (6/1734)

Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.  (+info)

Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. (7/1734)

In the mitotic cell cycle of the yeast Saccharomyces cerevisiae, the sister chromatid is preferred over the homologous chromosome (non-sister chromatid) as a substrate for DNA double-strand break repair. However, no genes have yet been shown to be preferentially involved in sister chromatid-mediated repair. We developed a novel method to identify genes that are required for repair by the sister chromatid, using a haploid strain that can embark on meiosis. We show that the recombinational repair gene RAD54 is required primarily for sister chromatid-based repair, whereas TID1, a yeast RAD54 homologue, and the meiotic gene DMC1, are dispensable for this type of repair. Our observations suggest that the sister chromatid repair pathway, which involves RAD54, and the homologous chromosome repair pathway, which involves DMC1, can substitute for one another under some circumstances. Deletion of RAD54 in S.cerevisiae results in a phenotype similar to that found in mammalian cells, namely impaired DNA repair and reduced recombination during mitotic growth, with no apparent effect on meiosis. The principal role of RAD54 in sister chromatid-based repair may also be shared by mammalian and yeast cells.  (+info)

Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. (8/1734)

The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.  (+info)