Involvement of poly (ADP-ribose)-polymerase in the Pax-6 gene regulation in neuroretina. (1/9151)

The quail Pax-6 gene is expressed from two promoters named P0 and P1. P0 promoter is under the control of a neuroretina-specific enhancer (EP). This enhancer activates the P0 promoter specifically in neuroretina cells and in a developmental stage-dependent manner. The EP enhancer binds efficiently, as revealed by southwestern experiments, to a 110 kDa protein present in neuroretina cells but not in Quail Embryos Cells and Retinal Pigmented Epithelium which do not express the P0-initiated mRNAs. To study the role of p110 in Pax-6 regulation, we have purified the p110 from neuroretina cells extracts. Based on the peptide sequence of the purified protein, we have identified the p110 as the poly(ADP-ribose) polymerase (PARP). Using bandshift experiments and footprinting studies, we present evidence that PARP is a component of protein complexes bound to the EP enhancer that increases the on rate of the protein complex formation to DNA. Using PARP inhibitors (3AB and 6.5 Hphe), we show that these products are able to inhibit EP enhancer activity in neuroretina cells. Finally, we demonstrate that these inhibitors are able to decrease the expression of the P0-initiated mRNA in the MC29-infected RPE cells which, in contrast to the RPE cells, accumulated the PARP in response to v-myc expression. Our results suggest that PARP is involved in the Pax-6 regulation.  (+info)

even-skipped determines the dorsal growth of motor axons in Drosophila. (2/9151)

Axon pathfinding and target choice are governed by cell type-specific responses to external cues. Here, we show that in the Drosophila embryo, motorneurons with targets in the dorsal muscle field express the homeobox gene even-skipped and that this expression is necessary and sufficient to direct motor axons into the dorsal muscle field. Previously, it was shown that motorneurons projecting to ventral targets express the LIM homeobox gene islet, which is sufficient to direct axons to the ventral muscle field. Thus, even-skipped complements the function of islet, and together these two genes constitute a bimodal switch regulating axonal growth and directing motor axons to ventral or to dorsal regions of the muscle field.  (+info)

Fish swimbladder: an excellent mesodermal inductor in primary embryonic induction. (3/9151)

Swimbladder of the crucian carp, Carassius auratus, was found to be better as a vegatalizing tissue than other tissues, such as guinea-pig bone marrow, when presumptive ectoderm of Triturus gastrulae was used as reacting tissue. Swimbladder usually induced assemblies of highly organized mesodermal tissues, such as notochord, somites and pronephric tubules, some of which were covered by mesodermal epithelium without any epidermal covering. A special character of the effect of swimbladder was the rather frequent induction of solid balls of undifferentiated cells, which were identified as mesodermal or mesodermal and probably endodermal. These findings show that swimbladder has a strong and fast spreading vegetalizing effect on the responding presumptive ectoderm.  (+info)

A glial-neuronal signaling pathway revealed by mutations in a neurexin-related protein. (4/9151)

In the nervous system, glial cells greatly outnumber neurons but the full extent of their role in determining neural activity remains unknown. Here the axotactin (axo) gene of Drosophila was shown to encode a member of the neurexin protein superfamily secreted by glia and subsequently localized to axonal tracts. Null mutations of axo caused temperature-sensitive paralysis and a corresponding blockade of axonal conduction. Thus, the AXO protein appears to be a component of a glial-neuronal signaling mechanism that helps to determine the membrane electrical properties of target axons.  (+info)

Mitochondrial gene expression is regulated at the level of transcription during early embryogenesis of Xenopus laevis. (5/9151)

Mitochondrial transcription in the early Xenopus laevis embryo resumes several hours before active mtDNA replication, effectively decoupling mtDNA transcription and replication. This developmental feature makes Xenopus embryogenesis an appealing model system to investigate the regulation of mitochondrial transcription. Studies reported here refine our understanding of the timing, magnitude, and mechanism of this transcriptional induction event. Northern analyses of six mitochondrial mRNAs (normalized to mtDNA) reveal that transcript levels remain basal between fertilization and gastrulation and then undergo a coordinate induction, culminating in a 20-28-fold increase over egg levels by 48 h of development. Measurement of mitochondrial run-on transcription rates demonstrates a good correlation between transcription rates and transcript levels, showing that transcription itself is the primary determinant of transcript abundance. Experimental increases in mitochondrial ATP and energy charge also correlate with patterns of transcript levels and transcription rates, suggesting that developmental changes in the biochemical composition of the mitochondrial matrix could be regulating transcriptional activity. Consistent with this idea, transcriptional run-on rates in mitochondria of early embryos can be stimulated by the addition of tricarboxylic acid cycle intermediates to the run-on reaction. However, mitochondria of later stages do not show this response to the addition of metabolite. In combination, these data suggest that mitochondrial transcription is under metabolic regulation during early Xenopus embryogenesis.  (+info)

2,3,7,8-Tetrachlorodibenzo-p-dioxin alters cardiovascular and craniofacial development and function in sac fry of rainbow trout (Oncorhynchus mykiss). (6/9151)

Hallmark signs of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity in rainbow trout sac fry, are yolk sac edema, hemorrhage, craniofacial malformation, and growth retardation culminating in mortality. Our objective was to determine the role of cardiovascular dysfunction in the development of this toxicity. An embryotoxic TCDD dose (385 pg/g egg) caused a progressive reduction in blood flow in rainbow trout sac fry manifested first and most dramatically in the 1st and 2nd branchial arches and vessels perfusing the lower jaw. Blood flow was reduced later in the infraorbital artery and occipital vein of the head as well as segmental vessels and caudal vein of the trunk. Reduced perfusion occurred last in gill branchial arteries involved with oxygen uptake and the subintestinal vein and vitelline vein involved with nutrient uptake. Although heart rate throughout sac fry development was not affected, heart size at 50 days post-fertilization (dpf) was reduced far more than body weight or length, suggesting that the progressive circulatory failure caused by TCDD is associated with reduced cardiac output. Craniofacial development was arrested near hatch, giving rise to craniofacial malformations in which the jaws and anterior nasal structures were underdeveloped. Unlike the medaka embryo, in which TCDD causes apoptosis in the medial yolk vein, endothelial cell death was not observed in rainbow trout sac fry. These findings suggest a primary role for arrested heart development and reduced perfusion of tissues with blood in the early-life stage toxicity of TCDD in trout.  (+info)

Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. (7/9151)

Since the development of the enhancer trap technique, many large libraries of nuclear localized lacZ P-element stocks have been generated. These lines can lend themselves to the molecular and biological characterization of new genes. However they are not as useful for the study of development of cellular morphologies. With the advent of the GAL4 expression system, enhancer traps have a far greater potential for utility in biological studies. Yet generation of GAL4 lines by standard random mobilization has been reported to have a low efficiency. To avoid this problem we have employed targeted transposition to generate glial-specific GAL4 lines for the study of glial cellular development. Targeted transposition is the precise exchange of one P element for another. We report the successful and complete replacement of two glial enhancer trap P[lacZ, ry+] elements with the P[GAL4, w+] element. The frequencies of transposition to the target loci were 1.3% and 0.4%. We have thus found it more efficient to generate GAL4 lines from preexisting P-element lines than to obtain tissue-specific expression of GAL4 by random P-element mobilization. It is likely that similar screens can be performed to convert many other P-element lines to the GAL4 system.  (+info)

Involvement of protein kinase C in 5-HT-stimulated ciliary activity in Helisoma trivolvis embryos. (8/9151)

1. During development, embryos of the pulmonate gastropod, Helisoma trivolvis, undergo a rotation behaviour due to the co-ordinated beating of three bands of ciliated epithelial cells. This behaviour is in part mediated by the neurotransmitter serotonin (5-HT) released from a pair of identified embryonic neurons. Using time-lapse videomicroscopy to measure ciliary beat frequency (CBF) in response to pharmacological manipulations, we determined whether protein kinase C (PKC) is involved in mediating 5-HT-stimulated ciliary beating. 2. Diacylglycerol (DAG) analogues sn-1,2-dioctanoyl glycerol (DiC8; 100 microM) and 1-oleoyl-2-acetyl-sn-glycerol (OAG; 100 microM), partially mimicked the 5-HT-induced increase in CBF. In contrast, application of OAG in the absence of extracellular Ca2+ did not result in an increase in CBF. 3. 5-HT-stimulated CBF was effectively blocked by PKC inhibitors bisindolylmaleimide (10 and 100 nM) and calphostin C (10 nM). In addition, bisindolylmaleimide (100 nM) inhibited DiC8-induced increases in CBF. At a higher concentration (200 nM), bisindolylmaleimide did not significantly reduce 5-HT-stimulated cilio-excitation. 4. Two different phorbol esters, phorbol 12-myristate 13-acetate (TPA; 0.1, 10 or 1000 nM) and phorbol 12beta, 13alpha-dibenzoate (PDBn; 10 microM) did not alter basal CBF. TPA (1 microM) did not alter 5-HT-stimulated CBF. Likewise, the synthetic form of phosphatidylserine, N-(6-phenylhexyl)-5-chloro-1-naphthalenesulphonamide (SC-9; 10 microM), did not increase CBF, whereas a strong increase in CBF was observed upon exposure to 5-HT. 5. The results suggest that a DAG-dependent, phorbol ester-insensitive isoform of PKC mediates 5-HT-stimulated CBF in ciliated epithelial cells from embryos of Helisoma trivolvis.  (+info)