Legionnaires' disease on a cruise ship linked to the water supply system: clinical and public health implications. (1/741)

The occurrence of legionnaires' disease has been described previously in passengers of cruise ships, but determination of the source has been rare. A 67-year-old, male cigarette smoker with heart disease contracted legionnaires' disease during a cruise in September 1995 and died 9 days after disembarking. Legionella pneumophila serogroup 1 was isolated from the patient's sputum and the ship's water supply. Samples from the air-conditioning system were negative. L. pneumophila serogroup 1 isolates from the water supply matched the patient's isolate, by both monoclonal antibody subtyping and genomic fingerprinting. None of 116 crew members had significant antibody titers to L. pneumophila serogroup 1. One clinically suspected case of legionnaires' disease and one confirmed case were subsequently diagnosed among passengers cruising on the same ship in November 1995 and October 1996, respectively. This is the first documented evidence of the involvement of a water supply system in the transmission of legionella infection on ships. These cases were identified because of the presence of a unique international system of surveillance and collaboration between public health authorities.  (+info)

Concurrent infection with Legionella pneumophila and Pneumocystis carinii in a patient with adult T cell leukemia. (2/741)

A 48-year-old woman was admitted to our hospital with high fever, chills, cough, and exertional dyspnea. On admission, the chest roentgenogram and computed tomography scan showed bilateral alveolar infiltration in the middle and lower lung fields. Microscopic examination of the bronchial lavage fluid showed flower cells typical for adult T-cell leukemia (ATL) and cysts of Pneumocystis carinii, and Legionella pneumophila serogroup 1 grew on buffered charcoal yeast extract (BCYE)-alpha agar. The patient was successfully treated with antibiotics including trimethoprim/sulfamethoxazole, erythromycin, and sparfloxacin. Remission of ATL was achieved after three courses of antileukemic chemotherapy. Mixed infection of opportunistic pathogens should be considered in patients with ATL.  (+info)

Surface-associated heat shock proteins of Legionella pneumophila and Helicobacter pylori: roles in pathogenesis and immunity. (3/741)

Bacterial heat shock proteins (Hsps) are abundantly produced during the course of most microbial infections and are often targeted by the mammalian immune response. While Hsps have been well characterized for their roles in protein folding and secretion activities, little attention has been given to their participation in pathogenesis. In the case of Legionella pneumophila, an aquatic intracellular parasite of protozoa and cause of Legionnaires' disease, Hsp60 is uniquely located in the periplasm and on the bacterial surface. Surface-associated Hsp60 promotes attachment and invasion in a HeLa cell model and may alter an early step associated with the fusion of phagosomes with lysosomes. Avirulent strains of L. pneumophila containing defined mutations in several dot/icm genes are defective in localizing Hsp60 onto their surface and are reduced approximately 1000-fold in their invasiveness towards HeLa cells. For the ulcer-causing bacterium Helicobacter pylori, surface-associated Hsp60 and Hsp70 mediate attachment to gastric epithelial cells. The increased expression of these Hsps following acid shock correlates with both increased association with and inflammation of the gastric mucosa. A role for Hsps in colonization, mucosal infection and in promoting inflammation is discussed.  (+info)

A community outbreak of Legionnaires' disease linked to hospital cooling towers: an epidemiological method to calculate dose of exposure. (4/741)

BACKGROUND: From July to September 1994, 29 cases of community-acquired Legionnaires' disease (LD) were reported in Delaware. The authors conducted an investigation to a) identify the source of the outbreak and risk factors for developing Legionella pneumophila serogroup 1 (Lp-1) pneumonia and b) evaluate the risk associated with the components of cumulative exposure to the source (i.e. distance from the source, frequency of exposure, and duration of exposure). METHODS: A case-control study matched 21 patients to three controls per case by known risk factors for acquiring LD. Controls were selected from patients who attended the same clinic as the respective case-patients. Water samples taken at the hospital, from eight nearby cooling towers, and from four of the patient's homes were cultured for Legionella. Isolates were subtyped using monoclonal antibody (Mab) analysis and arbitrarily primed polymerase chain reaction (AP-PCR). RESULTS: Eleven (52%) of 21 case-patients worked at or visited the hospital compared with 17 (27%) of 63 controls (OR 5.0, 95% CI : 1.1-29). For those who lived, worked, or visited within 4 square miles of the hospital, the risk of illness decreased by 20% for each 0.10 mile from the hospital; it increased by 80% for each visit to the hospital; and it increased by 8% for each hour spent within 0.125 miles of the hospital. Lp-1 was isolated from three patients and both hospital cooling towers. Based on laboratory results no other samples contained Lp-1. The clinical and main-tower isolates all demonstrated Mab pattern 1,2,5,6. AP-PCR matched the main-tower samples with those from two case-patients. CONCLUSION: The results of our investigation suggested that the hospital cooling towers were the source of a community outbreak of LD. Increasing proximity to and frequency of exposure to the towers increased the risk of LD. New guidelines for cooling tower maintenance are needed. Knowing the location of cooling towers could facilitate maintenance inspections and outbreak investigations.  (+info)

Multiple types of Legionella pneumophila serogroup 6 in a hospital heated-water system associated with sporadic infections. (5/741)

Five sporadic cases of nosocomial Legionnaires' disease were documented from 1989 to 1997 in a hospital in northern Italy. Two of them, which occurred in a 75-year-old man suffering from ischemic cardiopathy and in an 8-year-old girl suffering from acute leukemia, had fatal outcomes. Legionella pneumophila serogroup 6 was isolated from both patients and from hot-water samples taken at different sites in the hospital. These facts led us to consider the possibility that a single clone of L. pneumophila serogroup 6 had persisted in the hospital environment for 8 years and had caused sporadic infections. Comparison of clinical and environmental strains by monoclonal subtyping, macrorestriction analysis (MRA), and arbitrarily primed PCR (AP-PCR) showed that the strains were clustered into three different epidemiological types, of which only two types caused infection. An excellent correspondence between the MRA and AP-PCR results was observed, with both techniques having high discriminatory powers. However, it was not possible to differentiate the isolates by means of ribotyping and analysis of rrn operon polymorphism. Environmental strains that antigenically and chromosomally matched the infecting organism were present at the time of infection in hot-water samples taken from the ward where the patients had stayed. Interpretation of the temporal sequence of events on the basis of the typing results for clinical and environmental isolates enabled the identification of the ward where the patients became infected and the modes of transmission of Legionella infection. The long-term persistence in the hot-water system of different clones of L. pneumophila serogroup 6 indicates that repeated heat-based control measures were ineffective in eradicating the organism.  (+info)

Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. (6/741)

Legionella pneumophila is the cause of Legionnaires' disease, which is a form of potentially fatal pneumonia. To identify genes required for virulence of the bacterium, a library of 1,386 L. pneumophila signature tagged transposon mutants was studied for guinea pig virulence. The mutants were screened in pools of 96 each in a guinea pig model of L. pneumophila pneumonia. Sixteen unique mutant clones were determined to have attenuated virulence after being screened twice in the animal model. All 16 mutants failed to multiply in both lungs and spleens. Four of the sixteen had no apparent defect for intracellular multiplication in macrophages. Partial DNA sequences of the interrupted genes adjacent to the transposon insertions showed that six of them had mutations in five known L. pneumophila virulence genes: dotB, dotF/icmG, dotO/icmB, icmX, and proA. Three of the sequenced clones contained mutations in genes without known homology to other published bacterial genes, and seven clones appeared to be homologous to five different known bacterial genes but are still being characterized. With this methodology, we demonstrate the existence of L. pneumophila genes responsible for non-macrophage-related virulence. The discovery of L. pneumophila virulence genes indicates the utility of the signature tagged mutagenesis technique for pulmonary pathogens.  (+info)

Single clonal origin of a high proportion of Legionella pneumophila serogroup 1 isolates from patients and the environment in the area of Paris, France, over a 10-year period. (7/741)

Arbitrarily primed PCR with three primers and pulsed-field gel electrophoresis were used to characterize a set of 75 clinical Legionella pneumophila serogroup 1 isolates, with no apparent epidemiological link, obtained from 24 hospitals in Paris, France, from 1987 to 1997. Unexpectedly, 25 clinical isolates from 15 hospitals had an identical profile (termed type A) by both methods. The same profile was subsequently found in 16 of 64 randomly selected environmental L. pneumophila serogroup 1 isolates from 15 different sites in the Paris area. There was no evidence of geographic clustering or a peak incidence of type A isolation. Type A has not been found in France outside the Paris area, suggesting that a particular type of L. pneumophila serogroup 1 is specifically present in the Paris water distribution network.  (+info)

Pontiac fever at a sewage treatment plant in the food industry. (8/741)

BACKGROUND AND OBJECTIVES: During a hot and humid summer period workers became ill with fever and flu-like symptoms after repairing a decanter for sludge concentration at a sewage treatment plant. The work took place over a period of 10 days in a small closed room, while another decanter was in operation and was consequently emitting aerosol to the environment, to which the workers were exposed. The aim of this study was to determine the cause of this outbreak of febrile illness so that additional cases could be prevented. METHODS: All 5 patients were seen and examined in the Department of Occupational Medicine. Furthermore 2 of the workers had recurrent illness and were examined during hospitalization. As Pontiac fever (nonpneumonic legionellosis) was suspected, antibodies to legionellae were measured in blood samples. After positive antibody titers to Legionella pneumophila were found, samples of the sludge were collected for legionellae culture. RESULTS AND CONCLUSIONS: The clinical picture agreed with that described for Pontiac fever, and positive antibody titers to L. pneumophila serogroup 1 were found in blood from all 5 patients. L. pneumophila serogroup 1 was cultured in high amounts from sludge from the decanter. It was concluded that the fever was caused by L. pneumophila emitted to the environment by the uncovered decanter. Procedures for preventing new cases were established.  (+info)