Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization. (41/4690)

We sequenced and characterized PMP22 (22-kD peroxisomal membrane protein) from Arabidopsis, which shares 28% to 30% amino acid identity and 55% to 57% similarity to two related mammalian peroxisomal membrane proteins, PMP22 and Mpv17. Subcellular fractionation studies confirmed that the Arabidopsis PMP22 is a genuine peroxisomal membrane protein. Biochemical analyses established that the Arabidopsis PMP22 is an integral membrane protein that is completely embedded in the lipid bilayer. In vitro import assays demonstrated that the protein is inserted into the membrane posttranslationally in the absence of ATP, but that ATP stimulates the assembly into the native state. Arabidopsis PMP22 is expressed in all organs of the mature plant and in tissue-cultured cells. Expression of PMP22 is not associated with a specific peroxisome type, as it is detected in seeds and throughout postgerminative growth as cotyledon peroxisomes undergo conversion from glyoxysomes to leaf-type peroxisomes. Although PMP22 shows increased accumulation during the growth of young seedlings, its expression is not stimulated by light.  (+info)

FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. (42/4690)

Distinctive from that of the animal system, the basic plan of the plant body is the continuous formation of a structural unit, composed of a stem with a meristem at the top and lateral organs continuously forming at the meristem. Therefore, mechanisms controlling the formation, maintenance, and development of a meristem will be a key to understanding the body plan of higher plants. Genetic analyses of filamentous flower (fil) mutants have indicated that FIL is required for the maintenance and growth of inflorescence and floral meristems, and of floral organs of Arabidopsis thaliana. FIL encodes a protein carrying a zinc finger and a HMG box-like domain, which is known to work as a transcription regulator. As expected, the FIL protein was shown to have a nuclear location. In situ hybridization clearly demonstrated that FIL is expressed only at the abaxial side of primordia of leaves and floral organs. Transgenic plants, ectopically expressing FIL, formed filament-like leaves with randomly arranged cells at the leaf margin. Our results indicate that cells at the abaxial side of the lateral organs are responsible for the normal development of the organs as well as for maintaining the activity of meristems.  (+info)

Identification and analysis of the Arabidopsis thaliana BSH gene, a member of the SNF5 gene family. (43/4690)

The multiprotein complexes involved in active dis-ruption of chromatin structure, homologous to yeast SWI/SNF complex, have been described for human and Drosophila cells. In all SWI/SNF-class complexes characterised so far, one of the key components is the SNF5-type protein. Here we describe the isolation of a plant (Arabidopsis thaliana ) cDNA encoding a 27 kDa protein which we named BSH, with high homology to yeast SNF5p and its human (INI1) and Drosophila (SNR1) counterparts as well as to other putative SNF5-type proteins from Caenorhabditis elegans, fish and yeast. With 240 amino acids, the Arabidopsis BSH is the smallest SNF5-type protein so far identified. When expressed in Saccharomyces cerevisiae, the gene for BSH partially complements the snf5 mutation. BSH is, however, unable to activate transcription in yeast when tethered to DNA. The gene for BSH occurs in single copy in the Arabidopsis genome and is ubiquitously expressed in the plant. Analysis of the whole cell and nuclear protein extracts with antibodies against recombinant BSH indicates that the protein is localised in nuclei. Transgenic Arabidopsis plants with markedly decreased physiological level of the BSH mRNA, resulting from the expression of antisense messenger, are viable but exhibit a distinctive phenotype characterised by bushy growth and flowers that are unable to produce seeds.  (+info)

Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. (44/4690)

Origin and rearrangement of ribosomal DNA repeats in natural allotetraploid Nicotiana tabacum are described. Comparative sequence analysis of the intergenic spacer (IGS) regions of Nicotiana tomentosiformis (the paternal diploid progenitor) and Nicotiana sylvestris (the maternal diploid progenitor) showed species-specific molecular features. These markers allowed us to trace the molecular evolution of parental rDNA in the allopolyploid genome of N. tabacum; at least the majority of tobacco rDNA repeats originated from N. tomentosiformis, which endured reconstruction of subrepeated regions in the IGS. We infer that after hybridization of the parental diploid species, rDNA with a longer IGS, donated by N. tomentosiformis, dominated over the rDNA with a shorter IGS from N. sylvestris; the latter was then eliminated from the allopolyploid genome. Thus, repeated sequences in allopolyploid genomes are targets for molecular rearrangement, demonstrating the dynamic nature of allopolyploid genomes.  (+info)

Incongruence in the diploid B-genome species complex of Glycine (Leguminosae) revisited: histone H3-D alleles versus chloroplast haplotypes. (45/4690)

Variation at the single-copy nuclear locus histone H3-D was surveyed in the diploid B-genome group of Glycine subgenus Glycine (Leguminosae: Papilionoideae), which comprises three named Australian species and a number of distinct but as yet not formally recognized taxa. A total of 23 alleles was identified in the 44 accessions surveyed. Only one individual was clearly heterozygous, which is not surprising given the largely autogamous breeding system of subgenus Glycine. Alleles differed by as many as 19 nucleotide substitutions, nearly all in the three introns; length variation was minimal. Phylogenetic analysis identified two shortest allele trees with very little homoplasy, suggesting that recombination has been rare. Both topological and data set incongruence were statistically significant between histone H3-D allele trees and trees inferred from chloroplast DNA haplotypes previously described from these same accessions. Whereas the distribution of H3-D alleles agrees well with morphologically based taxonomic groupings, chloroplast DNA haplotype polymorphisms transgress species boundaries, suggesting that the chloroplast genome is not tracking taxic relationships. Divergences among chloroplast DNA haplotypes involved in such transgressive patterns appear to be more recent than speciation events, suggesting hybridization rather than lineage sorting.  (+info)

Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. (46/4690)

The plant mitochondrial rps3 intron was analyzed for substitution and indel rate variation among 15 monocot and dicot angiosperms from 10 genera, including perennial and annual taxa. Overall, the intron sequence was very conserved among angiosperms. Based on length polymorphism, 10 different alleles were identified among the 10 genera. These allelic differences were mainly attributable to large indels. An insertion of 133 nucleotides, observed in the Alnus intron was partially or completely absent in the other lineages of the family Betulaceae. This insertion was located within domain IV of the secondary-structure model of this group IIA intron. A mobile element of 47 nucleotides that showed homology to sequences located in rice rps3 intron and in intergenic plant mitochondrial genomes was found within this insertion. Both substitution and indel rates were low among the Betulaceae sequences, but substitution rates were increasingly larger than indel rates in comparisons involving more distantly related taxa. From a secondary-structure model, regions involved in helical structures were shown to be well preserved from indels as compared to substitutions, but compensatory changes were not observed among the angiosperm sequences analyzed. Using approximate divergence times based on the fossil record, substitution and indel rate heterogeneity was observed between different pairs of annual and perennial taxa. In particular, the annual petunia and primrose evolved more than 15 and 10 times faster, for substitution and indel rates respectively, than the perennial birch and alder. This is the first demonstration of an evolutionary rate difference between perennial and annual forms in noncoding DNA, lending support to neutral causes such as the generation time, population size, and speciation rate effects to explain such rate heterogeneity. Surprisingly, the sequence from the rps3 intron had a high identity with the sequence of intron 1 from the angiosperm mitochondrial nad5 gene, suggesting a common origin of these two group IIA introns.  (+info)

Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). (47/4690)

Levels of genetic diversity within and among populations and species are shaped by both external (population-level) and internal (genomic and genic) evolutionary forces. To address the effect of internal pressures, we estimated nucleotide diversity for a pair of homoeologous Adh loci in an allotetraploid species, Gossypium hirsutum. These data represent the first such estimates for a pair of homoeologous nuclear loci in plants. Estimates of nucleotide diversity for AdhA in Gossypium are lower than those for any plant nuclear gene yet described. This low diversity appears to reflect primarily a history of repeated, severe genetic bottlenecks associated with both speciation and recent domestication, supplemented by an unusually slow nucleotide substitution rate and an autogamous breeding system. While not statistically supportable, the sum of the observations also suggest differential evolutionary dynamics at each of the homoeologous loci.  (+info)

Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. (48/4690)

The homeodomain-leucine zipper (HD-Zip) genes encode transcription factors that are characterized by the presence of both a homeodomain and a leucine zipper motif. They belong to the homeobox gene superfamily and have been reported only from flowering plants. This article is the first report on the ferm HD-Zip genes (named Crhb1-Crhb11) isolated from the homosporous ferm Ceratopteris richardii. Phylogenetic analyses of the II Crhb genes with previously reported angiosperm HD-Zip genes show that the Crhb genes belong to three of the four different angiosperm HD-Zip subfamilies (HD-Zip I, II, and IV), indicating that these subfamilies of HD-Zip genes originated before the diversification of the ferm and seed plant lineages. The Crhb4-Crhb8 and Crhb11 genes belong to the HD-Zip I subfamily but differ from angiosperm HD-Zip I genes by the presence of a seven-amino-acid indel in the leucine zipper motif. By the northern analyses, Crhb1 and Crhb3 were expressed only in gametophyte tissue. Expression of Crhb2 and Crhb11 genes could not be detected in any tissue examined, while all other Crhb genes were expressed in most sporophytic and gametophytic tissues. Although the functions of the Crhb genes in Ceratopteris are unknown, their patterns of expression suggest that they regulate developmental or physiological processes common to both the gametophyte and the sporophyte generations of the fern. Differences in the expression of Crhb1 between male gametophytes and male-hermaphrodite mixed populations of gametophytes suggests that the Crhb1 gene is involved in gametophytic sex determination.  (+info)