The mechanism of the increasing action of TA-993, a new 1,5- benzothiazepine derivative, on limb blood flow in anesthetized dogs: selective suppression of sympathetic nerve activity. (1/759)

TA-993, (-)-cis-3-acetoxy-5-(2-(dimethylamino)ethyl)-2, 3-di-hydro-8-methyl-2-(4-methylphenyl)-1,5-benzothiazepin-4(5H)one maleate, a new 1,5-benzothiazepine derivative with l-cis configuration, has a unique and selective increasing action on limb blood flow with little influence on arterial pressure besides an antiplatelet action. We studied the mechanism of increasing action of TA-993 on limb blood flow in anesthetized dogs. In a canine blood-perfused hindlimb preparation with a donor dog, TA-993 (100 microg/kg i.v.) did not increase femoral blood flow when administered to the donor dog, but did when administered to a recipient dog. TA-993 did not show the increasing action on femoral blood flow in the presence of hexamethonium or phentolamine, whereas it did in the presence of propranolol or atropine. TA-993 also showed a weak increasing effect on heart rate, which was inhibited by any one of these blockers. TA-993 (300 microg/kg i.v.) did not alter the phenylephrine (1-100 ng/kg i.a.)- or the talipexole (3-100 ng/kg i.a.)-induced increase in perfusion pressure in an autoperfused hindlimb. These results suggest that the increasing action of TA-993 on limb blood flow is mediated by the sympathetic nervous system but that the adrenergic receptors are not likely to be the central point of action of this new agent. There is a possibility that the mechanism of the increasing action on heart rate is different from that of its increasing action on limb blood flow.  (+info)

Electrical and mechanical responses to diltiazem in potassium depolarized myocardium of the guinea pig. (2/759)

Effects of diltiazem on the electrical and mechanical activities of guinea pig papillary muscle were investigated in K-rich Tyrode's solution (Kc1 12.7 mM). The electrical properties of cell membrane in K-rich solution were also examined in the ventricular muscle fibers. It was found that the overshoot as well as the maximum rate of rise (Vmax) of the action potential were highly sensitive to the extracellular concentration of CaC12 in K-rich solution. Vmax was also affected by NaC1. Diltiazem at a lower concentration (1.1 X 10(-7) M) caused a reduction in the contractile force of K-depolarized papillary muscle without producing significant changes in the resting and action potentials. In the presence of a higher concentration of diltiazem (1.1 X 10(-5) M), the contractile force decreased concurrently with the change in the action potential. Addition of CaC12 restored the original strength of contraction in parallel to the recovery of the action potential, especially in its overshoot and Vmax. From these results, it is inferred that diltiazem may decrease the contractile force of guinea pig papillary muscle either by interfering with the intrasmembrane calcium influx or by intracellularly reducing the free calcium ion concentration in the myoplasm.  (+info)

A comparison of an A1 adenosine receptor agonist (CVT-510) with diltiazem for slowing of AV nodal conduction in guinea-pig. (3/759)

1. The purpose of this study was to compare the pharmacological properties (i.e. the AV nodal depressant, vasodilator, and inotropic effects) of two AV nodal blocking agents belonging to different drug classes; a novel A1 adenosine receptor (A1 receptor) agonist, N-(3(R)-tetrahydrofuranyl)-6-aminopurine riboside (CVT-510), and the prototypical calcium channel blocker diltiazem. 2. In the atrial-paced isolated heart, CVT-510 was approximately 5 fold more potent to prolong the stimulus-to-His bundle (S-H interval), a measure of slowing AV nodal conduction (EC50 = 41 nM) than to increase coronary conductance (EC50 = 200 nM). At concentrations of CVT-510 (40 nM) and diltiazem (1 microM) that caused equal prolongation of S-H interval (approximately 10 ms), diltiazem, but not CVT-510, significantly reduced left ventricular developed pressure (LVP) and markedly increased coronary conductance. CVT-510 shortened atrial (EC50 = 73 nM) but not the ventricular monophasic action potentials (MAP). 3. In atrial-paced anaesthetized guinea-pigs, intravenous infusions of CVT-510 and diltiazem caused nearly equal prolongations of P-R interval. However, diltiazem, but not CVT-510, significantly reduced mean arterial blood pressure. 4. Both CVT-510 and diltiazem prolonged S-H interval, i.e., slowed AV nodal conduction. However, the A1 receptor-selective agonist CVT-510 did so without causing the negative inotropic, vasodilator, and hypotensive effects associated with diltiazem. Because CVT-510 did not affect the ventricular action potential, it is unlikely that this agonist will have a proarrythmic action in ventricular myocardium.  (+info)

ATP-mediated Ca2+ signaling in preglomerular smooth muscle cells. (4/759)

We performed studies to determine the effect of extracellular ATP on the intracellular Ca2+ concentration ([Ca2+]i) in freshly isolated microvascular smooth muscle cells (MVSMC). Suspensions of preglomerular MVSMC were prepared by enzymatic digestion and loaded with fura 2. Single cells were studied using a microscope-based fluorescence spectrophotometer during superfusion of a physiological salt solution with 1.8 mM Ca2+ and during exposure to similar solutions containing ATP. Under control conditions, baseline [Ca2+]i averaged 107 +/- 6 nM (n = 86 cells from 34 animals). ATP administration elicited concentration-dependent increases in [Ca2+]i. Exposure to ATP concentrations of 1, 10, and 100 microM increased intracellular Ca2+ to peak concentrations of 133 +/- 20, 338 +/- 37, and 367 +/- 35 nM, respectively (P < 0.05 vs. respective baseline). Steady-state [Ca2+]i increased to 113 +/- 15, 150 +/- 16 (P < 0.05 vs. baseline), and 180 +/- 12 nM (P < 0.05 vs. baseline) for the same groups. The [Ca2+]i response to ATP was also assessed in the absence of extracellular Ca2+ and during blockade of L-type Ca2+ channels with diltiazem. In these studies, exposure to 100 microM ATP induced a transient peak increase in [Ca2+]i with the plateau phase being totally abolished under Ca2+-free conditions and markedly attenuated during Ca2+ channel blockade, respectively. These data indicate that ATP-mediated P2-receptor activation increases [Ca2+]i in freshly isolated preglomerular MVSMC by stimulating Ca2+ release from intracellular stores, in addition to stimulating the influx of extracellular Ca2+ through voltage-gated L-type Ca2+ channels.  (+info)

Temporal differences in actions of calcium channel blockers on K+ accumulation, cardiac function, and high-energy phosphate levels in ischemic guinea pig hearts. (5/759)

We investigated temporal differences in the protective action of three types of Ca2+ channel blockers in myocardial ischemia, focusing particularly on the blocking ability under depolarizing conditions. The effects of diltiazem, verapamil, and nifedipine on extracellular potassium concentration ([K+]e), acidosis, and level of metabolic markers were examined during 30-min global ischemia and postischemic left ventricular (LV) function in isolated guinea pig hearts. Diltiazem and verapamil, but not nifedipine, inhibited the late phase (15-30 min) of [K+]e elevation, whereas all three blockers delayed the onset of the early phase (0-8 min) of [K+]e elevation. Diltiazem and verapamil inhibited ischemic contracture and improved postischemic LV function to a greater extent. These differences appeared to be linked to preservation of ATP and creatine phosphate and delay of cessation of anaerobic glycolytic activity. Maneuvers to preserve energy sources during ischemia (decrease in external Ca2+ concentration or pacing at a lower frequency) attenuated the late phase of [K+]e elevation. Inhibition of LV pressure was potentiated 12- and 8.2-fold by diltiazem and verapamil, respectively, at 8.9 mM K+ as compared with 2.9 mM K+, whereas that by nifedipine was unchanged. These results indicate that the differential cardioprotection of Ca2+ channel blockers in the late period of ischemia correlates with preservation of high-energy phosphates as a result of different Ca2+ channel blocking abilities under high [K+]e conditions.  (+info)

Class differences in the effects of calcium channel blockers in the rat remnant kidney model. (6/759)

BACKGROUND: Controversy persists as to the existence of class differences between calcium channel blockers (CCBs) in their ability to provide renoprotection and as to potential mechanisms involved. METHODS: Rats with 5/6 renal ablation were left untreated or received diltiazem, verapamil, or felodipine after the first week, and the relationship between continuous radiotelemetrically measured blood pressure (BP) and glomerulosclerosis (GS) was assessed at seven weeks. Additionally, the effects of these CCBs on renal autoregulation and hypertrophy were examined at three weeks after renal ablation. RESULTS: Although an excellent linear correlation was observed between the average BP levels and GS in all groups (r = 0.75 to 0.84, P < 0.01), significant protection was not achieved with any of the CCBs, but for different reasons. The antihypertensive effects of diltiazem were not sustained beyond the second week. Verapamil significantly reduced the average BP (144 +/- 4 mm Hg vs. 181 +/- 8 in untreated rats) but shifted the slope of the relationship between BP and GS (increase in percentage GS/mm Hg increase in average systolic BP) to the left (x intercept 121 vs. 144 mm Hg for untreated rats, P < 0.01) so that GS was not reduced. Felodipine also significantly reduced the average BP (144 +/- 3 mm Hg) and shifted the slope to the left (x intercept 123 mm Hg), but additionally made the slope steeper (2.3 +/- 0.5 vs. 0.82 +/- 0.2 in untreated rats). Because of these differing effects on the relationship between BP and GS, the rank order of GS for any given BP elevation was as follows: felodipine > verapamil > diltiazem = untreated. Felodipine, but not verapamil or diltiazem, caused additional impairment of the already impaired renal autoregulation in untreated rats, thereby explaining its adverse effects on GS. By contrast, the adverse effects of verapamil on GS were attributable to the greater amplitude of BP fluctuations that was observed in the verapamil-treated rats such that for any given average BP, these rats were exposed to greater peak pressures as compared with the other groups. None of the CCBs had a significant effect on glomerular hypertrophy. CONCLUSIONS: These class differences between CCBs in their relative impact on systemic BP profiles, renal autoregulation, and glomerular pressure transmission may have clinically significant implications and may account for the variable glomeruloprotection that has been observed with these agents in both experimental models and in humans.  (+info)

The mode of action of contractile effects induced by external calcium and its related bivalent cations in the KCl-depolarized rat uterus. (7/759)

The cumulative log dose-response curve (DRC) isometrically produced by CaCl2 on depolarized uteri of rats in Ca2+-free KCl Ringer's solution (pH 7.8) showed a plateau-shaped type, when responses were plotted as a percent of the maximal tension of 50 micrometer acetylcholine, whereas those produced by BaCl2 or SrCl2 were a simple sigmoid type with the maximal response near the height of the plateau induced by Ca2+. The plateau phase of Ca2+ was inhibited competitively by Mg2+ (0.5--50 mM) and non-competitively by Mn2+ (30 micrometer--1 mM), whereas the maximal contraction of Ca2+ was not inhibited by either ion. Dantrolene (0.1 mM) inhibited both the plateau and the maximal contraction of Ca 2+ and retained the plateau-shaped type. EGTA (2mM) potentiated the plateau to the maximal response level and changed the DRC induced by Ca2+ to the simple sigmoid type. From these results, the plateau of DRC induced by Ca2+ seems to be mainly due to actions of external Ca2+ on the calcium binding of internal surface of cell membrane, suggesting that the internal surface is the site of the bivalent cations tested.  (+info)

Expression of receptor for advanced glycosylation end products (AGEP) and inhibition of AGEP-induced cytosolic calcium elevation by diltiazem in cultured rat aortic smooth muscle cells. (8/759)

AIM: To study whether there is a high affinity receptor for advanced glycosylation end product (AGEP) on thoracic aorta smooth muscle cells (ASMC) and to test effect of diltiazem on elevation of cytosolic free calcium induced by AGEP. METHODS: Interactions of AGEP-bovine serum albumin (BSA) with ASMC were studied with radioligand binding assay and cytosolic free calcium ([Ca2+]i) was examined in cultured ASMC with Fura 2-AM. RESULTS: AGEP-BSA was specifically bound to cells at 4 degrees C and was taken up and degraded at 37 degrees C. These processes were concentration-dependent and saturable. Scatchard analysis indicated that the receptor was with dissociation constant of 65.3 +/- 1.5 nmol.L-1 and its maximal binding capacity of 1.57 +/- 0.04 nmol/g cell protein. Early glycated low density lipoprotein (LDL) was not recognized by this receptor. AGEP-BSA elevated cytosolic free calcium in a concentration-dependent manner. Pretreatment with diltiazem inhibited AGEP-BSA-induced elevation in concentration- and time-dependent manners. CONCLUSION: There was a high affinity receptor for AGEP on ASMC, which mediated internalization and degradation of AGEP. Pretreatment with diltiazem inhibited the AGEP-induced elevation of cytosolic free calcium.  (+info)