Preventive effects of dehydroepiandrosterone acetate on the fatty liver induced by orotic acid in male rats. (25/20742)

Preventive effects of dehydroepiandrosteone acetate (DHEA-A) and clofibrate (positive control substance) on the fatty liver induced by orotic acid (OA) were examined on the male Sprague-Dawley rats fed a high sucrose based diet containing 1% OA and this diet further mixed with 0.5% DHEA-A or 0.5% clofibrate for 2 weeks. Numerous lipid droplets were observed in the hepatocytes of the rats treated with OA alone, but not in those treated with DHEA-A or clofibrate. In comparison to the group with OA alone, the DHEA-A or clofibrate treated rats showed a larger relative liver weight (to body weight) which was accompanied by increased peroxisomes in the hepatocytes. These results indicate that DHEA-A, as well as clofibrate, may prevent OA-induced fatty liver.  (+info)

Environmental contaminants and body fat distribution. (26/20742)

The effect of body mass index (BMI) and waist:hip ratio (WHR) on plasma levels of organochlorines [i.e., 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE)] was investigated in a sample of black and white women drawn from a population-based study in North Carolina. Organochlorine levels were determined in plasma samples from 99 women selected on the basis of race (black versus white) and quartile of the WHR (1st versus 4th). Of a panel of 20 organochlorine compounds tested, only DDE was detectable in most study subjects. Measurements of height, weight, and waist and hip circumferences were taken during an in-person interview. Information was elicited regarding dietary, residential, and breast-feeding histories. Results of multiple regression analyses indicate that black women had significantly higher plasma levels of DDE than white women. These levels were independent of BMI and WHR. BMI but not WHR was also found to be an independent predictor of DDE plasma level. These results suggest that black/white differences should be considered in studies that explore the relationship between environmental contaminants and various disease outcomes, such as breast cancer risk. In addition, BMI may affect circulating levels of contaminants and should also be considered a potentially important modifying factor for exposure to lipophilic substances.  (+info)

Dietary iron and risk of myocardial infarction in the Rotterdam Study. (27/20742)

Free iron has been implicated in lipid peroxidation and ischemic myocardial damage, and it has been suggested that iron is an independent risk factor for myocardial infarction. The authors investigated whether dietary iron is associated with an increased risk of fatal and nonfatal myocardial infarction in the Rotterdam Study, a community-based prospective cohort study of 7,983 elderly subjects in Rotterdam, the Netherlands. The study sample consisted of 4,802 participants who at baseline had no known history of myocardial infarction and for whom dietary data were available. From 1990 to 1996, 124 subjects had a myocardial infarction. No association was observed between total iron intake and risk of myocardial infarction after adjustment for age and sex (relative risk for the highest vs. the lowest tertile of intake = 0.89, 95% confidence interval (CI) 0.55-1.45, p for trend = 0.640). Heme iron intake was positively associated with risk of myocardial infarction (relative risk for the highest vs. the lowest tertile of intake = 1.83, 95% CI 1.16-2.91, p for trend = 0.008) after adjustment for age and sex, and this association persisted after multivariate adjustment (relative risk = 1.86, 95% CI 1.14-3.09, p for trend = 0.010). A distinction between fatal and nonfatal cases of myocardial infarction indicated that the association of heme iron with myocardial infarction was more pronounced in fatal cases. The results suggest that a high dietary heme iron intake is related to an increased risk of myocardial infarction and that it may specifically affect the rate of fatality from myocardial infarction.  (+info)

Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice. (28/20742)

BACKGROUND: Iron deposition is evident in human atherosclerotic lesions, suggesting that iron may play a role in the development of atherosclerosis. To test this idea, the correlation between the extent of iron deposition and the severity of atherosclerosis in apolipoprotein E (apoE)-deficient mice was investigated. Furthermore, the effect of a low-iron diet on the progression of atherosclerotic lesions in these animals was evaluated. METHODS AND RESULTS: Iron deposition in tissues of apoE-deficient mice was examined by Perls' staining method. The results clearly demonstrated that iron deposits are present in atherosclerotic lesions and tissue sections of heart and liver in an age-dependent manner. When the young mice received a low-iron diet for 3 months, the hematocrit, serum iron, hemoglobin, and cholesterol concentrations were not significantly altered compared with those of littermates placed on a chow diet. However, the serum ferritin level of animals in the iron-restricted group was 27% to 30% lower than that of the control group in either sex. Furthermore, the lipoproteins isolated from the iron-restricted group exhibited greater resistance to copper-induced oxidation. Histological examination revealed that atherosclerotic lesions developed in mice fed a low-iron diet were significantly smaller than those found in control littermates. Likewise, the iron deposition as well as tissue iron content was much less in aortic tissues of the iron-restricted animals. Circulating autoantibodies to oxidized LDL and immunostains for epitopes of malondialdehyde-modified LDL detected on lesions were also significantly lower in mice fed a low-iron diet. CONCLUSIONS: Iron deposition is closely associated with the progression of atherosclerosis in apoE-deficient mice. Restriction in dietary iron intake leads to significant inhibition of lesion formation in these animals. These results suggest that the beneficial effect of a low-iron diet may be mediated, at least in part, by the reduction of iron deposition as well as LDL oxidation in vascular lesions.  (+info)

Effect of leptin deficiency on metabolic rate in ob/ob mice. (29/20742)

Reduced metabolic rate may contribute to weight gain in leptin-deficient (ob/ob) mice; however, available studies have been criticized for referencing O2 consumption (VO2) to estimated rather than true lean body mass. To evaluate whether leptin deficiency reduces energy expenditure, four separate experiments were performed: 1) NMR spectroscopy was used to measure fat and nonfat mass, permitting VO2 to be referenced to true nonfat mass; 2) dietary manipulation was used in an attempt to eliminate differences in body weight and composition between ob/ob and C57BL/6J mice; 3) short-term effects of exogenous leptin (0.3 mg. kg-1. day-1) on VO2 were examined; and 4) body weight and composition were compared in leptin-repleted and pair-fed ob/ob animals. ob/ob animals had greater mass, less lean body mass, and a 10% higher metabolic rate when VO2 was referenced to lean mass. Dietary manipulation achieved identical body weight in ob/ob and C57BL/6J animals; however, despite weight gain in C57BL/6J animals, percent fat mass remained higher in ob/ob animals (55 vs. 30%). Exogenous leptin increased VO2 in ob/ob but not control animals. Weight loss in leptin-repleted ob/ob mice was greater than in pair-fed animals (45 vs. 17%). We conclude, on the basis of the observed increase in VO2 and accelerated weight loss seen with leptin repletion, that leptin deficiency causes a reduction in metabolic rate in ob/ob mice. In contrast, these physiological studies suggest that comparison of VO2 in obese and lean animals does not produce useful information on the contribution of leptin to metabolism.  (+info)

Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis. (30/20742)

Cholic acid is a critical component of the lithogenic diet in mice. To determine its pathogenetic roles, we fed chow or 1% cholesterol with or without 0.5% cholic acid to C57L/J male mice, which because of lith genes have 100% gallstone prevalence rates. After 1 yr on the diets, we measured bile flow, biliary lipid secretion rates, hepatic cholesterol and bile salt synthesis, and intestinal cholesterol absorption. After hepatic conjugation with taurine, cholate replaced most tauro-beta-muricholate in bile. Dietary cholic acid plus cholesterol increased bile flow and biliary lipid secretion rates and reduced cholesterol 7alpha-hydroxylase activity significantly mostly via deoxycholic acid, cholate's bacterial 7alpha-dehydroxylation product but did not downregulate cholesterol biosynthesis. Intestinal cholesterol absorption doubled, and biliary cholesterol crystallized as phase boundaries shifted. Feeding mice 1% cholesterol alone produced no lithogenic or homeostatic effects. We conclude that in mice cholic acid promotes biliary cholesterol hypersecretion and cholelithogenesis by enhancing intestinal absorption, hepatic bioavailability, and phase separation of cholesterol in bile.  (+info)

Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. (31/20742)

It has been reported that, unlike high-fat diets, high-sucrose diets cause insulin resistance in the absence of an increase in visceral fat and that the insulin resistance develops only in male rats. This study was done to 1) determine if isolated muscles of rats fed a high-sucrose diet are resistant to stimulation of glucose transport when studied in vitro and 2) obtain information regarding how the effects of high-sucrose and high-fat diets on muscle insulin resistance differ. We found that, compared with rat chow, semipurified high-sucrose and high-starch diets both caused increased visceral fat accumulation and insulin resistance of skeletal muscle glucose transport. Insulin responsiveness of 2-deoxyglucose (2-DG) transport measured in epitrochlearis and soleus muscles in vitro was decreased approximately 40% (P < 0.01) in both male and female rats fed a high-sucrose compared with a chow diet. The high-sucrose diet also caused resistance of muscle glucose transport to stimulation by contractions. There was a highly significant negative correlation between stimulated muscle 2-DG transport and visceral fat mass. In view of these results, the differences in insulin action in vivo observed by others in rats fed isocaloric high-sucrose and high-starch diets must be due to additional, specific effects of sucrose that do not carry over in muscles studied in vitro. We conclude that, compared with rat chow, semipurified high-sucrose and high-cornstarch diets, like high-fat diets, cause increased visceral fat accumulation and severe resistance of skeletal muscle glucose transport to stimulation by insulin and contractions.  (+info)

Ontogeny of intestinal safety factors: lactase capacities and lactose loads. (32/20742)

We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.  (+info)