Cellular disposition of sulphamethoxazole and its metabolites: implications for hypersensitivity. (1/138)

1. Bioactivation of sulphamethoxazole (SMX) to chemically-reactive metabolites and subsequent protein conjugation is thought to be involved in SMX hypersensitivity. We have therefore examined the cellular metabolism, disposition and conjugation of SMX and its metabolites in vitro. 2. Flow cytometry revealed binding of N-hydroxy (SMX-NHOH) and nitroso (SMX-NO) metabolites of SMX, but not of SMX itself, to the surface of viable white blood cells. Cellular haptenation by SMX-NO was reduced by exogenous glutathione (GSH). 3. SMX-NHOH and SMX-NO were rapidly reduced back to the parent compound by cysteine (CYS), GSH, human peripheral blood cells and plasma, suggesting that this is an important and ubiquitous bioinactivation mechanism. 4. Fluorescence HPLC showed that SMX-NHOH and SMX-NO depleted CYS and GSH in buffer, and to a lesser extent, in cells and plasma. 5. Neutrophil apoptosis and inhibition of neutrophil function were induced at lower concentrations of SMX-NHOH and SMX-NO than those inducing loss of membrane viability, with SMX having no effect. Lymphocytes were significantly (P<0.05) more sensitive to the direct cytotoxic effects of SMX-NO than neutrophils. 6. Partitioning of SMX-NHOH into red blood cells was significantly (P<0.05) lower than with the hydroxylamine of dapsone. 7. Our results suggest that the balance between oxidation of SMX to its toxic metabolites and their reduction is an important protective cellular mechanism. If an imbalance exists, haptenation of the toxic metabolites to bodily proteins including the surface of viable cells can occur, and may result in drug hypersensitivity.  (+info)

Quinone reductase inhibitors block SAPK/JNK and NFkappaB pathways and potentiate apoptosis. (2/138)

A variety of environmental stresses stimulate the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEKK) > stress-activated protein kinase (SAPK)-ERK kinase (SEK) > SAPK/c-Jun NH(2)-terminal kinase (JNK) stress-activated protein kinase cascade and coordinately activate the transcription factor NFkappaB. Mechanisms of stress activation upstream of MEKK1 have not been precisely determined. Redox mechanisms involving sulfhydryls are likely because N-acetyl-cysteine at millimolar concentrations blocks stress signals. Because intracellular sulfhydryl concentrations can be regulated through redox cycling involving reactive quinones (1), we tested the ability of quinone reductase inhibitors to alter stress signaling. Several quinone reductases are inhibited by dicoumarol, a coumarin derivative. Dicoumarol prevented SAPK activation in vivo by chemical cell stressors and also prevented SAPK activation induced by expression of the tumor necrosis factor alpha (TNFalpha) receptor-associated protein TRAF2 but not by expression of truncated active MEKK1. Other coumarin derivatives failed to block SAPK activation, but other inhibitors of quinone reductases, particularly menadione, similarly blocked SAPK activation. Cells deficient in a major quinone reductase, NQO1, displayed hypersensitivity to dicoumarol stress inhibition, whereas SAPK in cells reconstituted with the NQO1 gene displayed relative dicoumarol resistance. Consistent with the proposed role of overlapping upstream signaling cascades in activation of NFkappaB, dicoumarol also blocked NFkappaB activation in primary macrophages stimulated with either lipopolysaccharide or TNFalpha. In addition, dicoumarol strongly potentiated TNFalpha-induced apoptosis in HeLa cells, probably by blocking the anti-apoptotic effect of NFkappaB. The ability of dicoumarol to simultaneously inhibit SAPK and NFkappaB activation and to potentiate apoptotic cell death suggests that SAPK is not an obligate participant in apoptosis. Dicoumarol, currently in clinical use as an oral anticoagulant, represents a potential therapeutic inhibitor of the SAPK and NFkappaB response.  (+info)

NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. (3/138)

beta-Lapachone activates a novel apoptotic response in a number of cell lines. We demonstrate that the enzyme NAD(P)H:quinone oxidoreductase (NQO1) substantially enhances the toxicity of beta-lapachone. NQO1 expression directly correlated with sensitivity to a 4-h pulse of beta-lapachone in a panel of breast cancer cell lines, and the NQO1 inhibitor, dicoumarol, significantly protected NQO1-expressing cells from all aspects of beta-lapachone toxicity. Stable transfection of the NQO1-deficient cell line, MDA-MB-468, with an NQO1 expression plasmid increased apoptotic responses and lethality after beta-lapachone exposure. Dicoumarol blocked both the apoptotic responses and lethality. Biochemical studies suggest that reduction of beta-lapachone by NQO1 leads to a futile cycling between the quinone and hydroquinone forms, with a concomitant loss of reduced NAD(P)H. In addition, the activation of a cysteine protease, which has characteristics consistent with the neutral calcium-dependent protease, calpain, is observed after beta-lapachone treatment. This is the first definitive elucidation of an intracellular target for beta-lapachone in tumor cells. NQO1 could be exploited for gene therapy, radiotherapy, and/or chemopreventive interventions, since the enzyme is elevated in a number of tumor types (i.e. breast and lung) and during neoplastic transformation.  (+info)

Cytokinesis-block micronucleus assay in primary human liver fibroblasts exposed to griseofulvin and mitomycin C. (4/138)

Primary liver fibroblasts were applied in a cytokinesis-block micronucleus assay in combination with fluorescence in situ hybridization (FISH) using two protocols. In protocol A (Prot. A), cytochalasin B (Cyt B) was added at the end of the treatment time directly to the medium containing the standard compounds, whereas in protocol B (Prot. B) the chemical-containing medium was removed and fresh medium with Cyt B was added. The study was performed using the aneugen griseofulvin (GF) and the clastogen mitomycin C (MMC) as standard compounds. With both protocols GF induced a significant increase in MN frequency over controls in a dose-related manner at the lower concentrations tested (7.5 and 15 microg/ml). At the highest dose (30 microg/ml) the aneugen effect was substantially reduced. MN induction obtained with Prot. A was significantly higher ( approximately 3-fold) than with Prot. B at the most effective concentration. The aneugen effect induced by GF did not change when different cell densities were used, but again with Prot. A we obtained the highest effect. MN induced by MMC showed a dose- and time-dependent increase in both protocols. In contrast to GF, the greater clastogenic response induced by MMC in human liver fibroblasts was obtained with Prot. B, approximately 3-fold higher than Prot. A at the most effective concentration and approximately 2-fold with 24 h treatment at 0.17 microg/ml MMC. With GF, the FISH data in human liver fibroblasts (80% C+MN) were fairly consistent with those obtained in the rodent cell lines. In human whole blood cultures, the same dose used in our experiment produced a relatively higher percentage of C+MN. FISH analysis showed that MMC induced mainly MN containing acentric fragments rather than whole chromosomes. In conclusion we have demostrated that chemically induced genetic effects are strongly dependent on the cell culture employed, treatment schedule and intra- and post-treatment experimental conditions.  (+info)

A novel NADPH:diamide oxidoreductase activity in arabidopsis thaliana P1 zeta-crystallin. (5/138)

The zeta-crystallin (ZCr) gene P1 of Arabidopsis thaliana, known to confer tolerance toward the oxidizing drug 1,1'-azobis(N, N-dimethylformamide) (diamide) to yeast [Babiychuk, E., Kushnir, S., Belles-Boix, E., Van Montagu, M. & Inze, D. (1995) J. Biol. Chem. 270, 26224], was expressed in Escherichia coli to characterize biochemical properties of the P1-zeta-crystallin (P1-ZCr). Recombinant P1-ZCr, a noncovalent dimer, showed NADPH:quinone oxidoreductase activity with specificity to quinones similar to that of guinea-pig ZCr. P1-ZCr also catalyzed the divalent reduction of diamide to 1,2-bis(N,N-dimethylcarbamoyl)hydrazine, with a kcat comparable with that for quinones. Two other azodicarbonyl compounds also served as substrates of P1-ZCr. Guinea-pig ZCr, however, did not catalyze the azodicarbonyl reduction. Hence, plant ZCr is distinct from mammalian ZCr, and can be referred to as NADPH:azodicarbonyl/quinone reductase. The quinone-reducing reaction was accompanied by radical chain reactions to produce superoxide radicals, while the azodicarbonyl-reducing reaction was not. Specificity to NADPH, as judged by kcat/Km, was > 1000-fold higher than that to NADH both for quinones and diamide. N-Ethylmaleimide and p-chloromercuribenzoic acid inhibited both quinone-reducing and diamide-reducing activities. Both NADPH and NADP+ suppressed the inhibition, but NADH did not, suggesting that sulfhydryl groups reside in the binding site for the phosphate group on the adenosine moiety of NADPH. The diamide-reducing activity of P1-ZCr accounts for the tolerance of P1-overexpressing yeast to diamide. Other possible physiological functions of P1-ZCr in plants are discussed.  (+info)

Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. (6/138)

The tumor suppressor gene wild-type p53 encodes a labile protein that accumulates in cells after different stress signals and can cause either growth arrest or apoptosis. One of the p53 target genes, p53-inducible gene 3 (PIG3), encodes a protein with significant homology to oxidoreductases, enzymes involved in cellular responses to oxidative stress and irradiation. This fact raised the possibility that cellular oxidation-reduction events controlled by such enzymes also may regulate the level of p53. Here we show that NADH quinone oxidoreductase 1 (NQO1) regulates p53 stability. The NQO1 inhibitor dicoumarol caused a reduction in the level of both endogenous and gamma-irradiation-induced p53 in HCT116 human colon carcinoma cells. This reduction was prevented by the proteasome inhibitors MG132 and lactacystin, suggesting enhanced p53 degradation in the presence of dicoumarol. Dicoumarol-induced degradation of p53 also was prevented in the presence of simian virus 40 large T antigen, which is known to bind and to stabilize p53. Cells overexpressing NQO1 were resistant to dicoumarol, and this finding indicates the direct involvement of NQO1 in p53 stabilization. NQO1 inhibition induced p53 degradation and blocked wild-type p53-mediated apoptosis in gamma-irradiated normal thymocytes and in M1 myeloid leukemic cells that overexpress wild-type p53. Dicoumarol also reduced the level of p53 in its mutant form in M1 cells. The results indicate that NQO1 plays an important role in regulating p53 functions by inhibiting its degradation.  (+info)

Reactive oxygen species from NAD(P)H:quinone oxidoreductase constitutively activate NF-kappaB in malignant melanoma cells. (7/138)

The transcription factor nuclear factor-kappaB (NF-kappaB) is constitutively activated in malignancies from enhanced activity of inhibitor of NF-kappaB (IkappaB) kinase, with accelerated IkappaBalpha degradation. We studied whether redox signaling might stimulate these events. Cultured melanoma cells generated superoxide anions (O(2)(-)) without serum stimulation. O(2)(-) generation was reduced by the NAD(P)H:quinone oxidoreductase (NQO) inhibitor dicumarol and the quinone analog capsaicin, suggesting that electron transfer from NQO through a quinone-mediated pathway may be an important source of endogenous reactive oxygen species (ROS) in tumor cells. Treatment of malignant melanoma cells with the H(2)O(2) scavenger catalase, the sulfhydryl donor N-acetylcysteine, the glutathione peroxidase mimetic ebselen, or dicumarol decreased NF-kappaB activation. Catalase, N-acetylcysteine, ebselen, dicumarol, and capsaicin also inhibited growth of melanoma and other malignant cell lines. These results raise the possibility that ROS produced endogenously by mechanisms involving NQO can constitutively activate NF-kappaB in an autocrine fashion and suggest the potential for new antioxidant strategies for interruption of oxidant signaling of melanoma cell growth.  (+info)

Transient activation of Jun N-terminal kinases and protection from apoptosis by the insulin-like growth factor I receptor can be suppressed by dicumarol. (8/138)

The insulin-like growth factor I receptor (IGF-IR) activated by its ligands insulin-like growth factor (IGF)-I or IGF-II mediates suppression of apoptosis and contributes to tumorigenesis and cell growth. Here we investigated the activation of the stress-activated protein kinases including Jun N-terminal Kinases and p38 MAPK by IGF-I in interleukin-3-dependent FL5.12 lymphocytic cells that overexpress the IGF-IR (FL5.12/WT). We have shown previously that IGF-I protects these cells from apoptosis induced by interleukin-3 withdrawal but does not promote proliferation. IGF-I induced a rapid and transient activation of JNK that peaked at 40 min that was paralleled by a transient and robust phosphorylation of c-Jun. p38 was constitutively phosphorylated in FL5.12/WT cells. Activation of the JNK pathway by IGF-I occurred in the presence of phosphatidylinositol 3-kinase inhibitors and could be enhanced by anisomycin. Analysis of a series of FL5.12 cells expressing mutated IGF-IRs and analysis of 32D/IGF-IR cells showed that neither the C terminus of the receptor nor IRS-1 and IRS-2 were required for JNK activation, although tyrosine 950 was essential for full activation. The JNK inhibitor dicumarol suppressed IGF-I-mediated activation of JNK and phosphorylation of c-Jun but did not affect p38 and IkappaB phosphorylation or activation of AKT. IGF-I-mediated protection from apoptosis in FL5.12/WT cells was completely suppressed by dicumarol and partially suppressed by a p38 inhibitor. In the breast carcinoma cell line MCF-7, treatment with dicumarol also induced apoptosis. These data indicate that transient activation of JNK by IGF-I is mediated by signals that are distinct from those leading to phosphatidylinositol 3-kinase and AKT activation. The data further suggest that the SAPK pathways contribute to suppression of apoptosis by the IGF-IR.  (+info)