G-CSF signaling can differentiate promyelocytes expressing a defective retinoic acid receptor: evidence for divergent pathways regulating neutrophil differentiation. (1/124)

Several lines of investigation suggest that granulocyte colony-stimulating factor (G-CSF) augments all-trans retinoic acid (ATRA)-induced neutrophil differentiation in acute promyelocytic leukemia (APL). We sought to characterize the relationship between G-CSF- and ATRA-mediated neutrophil differentiation. We established a G-CSF receptor-transduced promyelocytic cell line, EPRO-Gr, derived from the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent EPRO cell line harboring a dominant-negative retinoic acid receptor alpha (RARalpha). In EPRO-Gr, neutrophil differentiation occurs either in GM-CSF upon addition of ATRA or upon induction with G-CSF alone. Transient transfection of EPRO-Gr cells with a RARE-containing reporter plasmid demonstrates increased activity in the presence of ATRA, but not G-CSF, while STAT3 phosphorylation occurs only in response to G-CSF. This suggests that ATRA-mediated differentiation of EPRO-Gr cells occurs via a RARE-dependent, STAT3-independent pathway, while G-CSF-mediated differentiation occurs via a RARE-independent, STAT3-dependent pathway. ATRA and G-CSF thus regulate differentiation by divergent pathways. We characterized these pathways in the APL cell line, NB4. ATRA induction of NB4 cells resulted in morphologic differentiation and up-regulation of C/EBPepsilon and G-CSFR, but not in STAT3 phosphorylation. The addition of G-CSF with ATRA during NB4 induction resulted in STAT3 phosphorylation but did not enhance differentiation. These results may elucidate how G-CSF and ATRA affect the differentiation of primary and ATRA-resistant APL cells.  (+info)

CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. (2/124)

The HOXA9 homeodomain protein is a key regulator of hematopoiesis and embryonic development. HOXA9 is expressed in primitive hematopoietic cells, and its prompt downregulation is associated with myelocytic maturation. Although transcriptional inactivation of HOXA9 during hematopoietic differentiation has been established, little is known about the biochemical mechanisms underlying the subsequent removal of HOXA9 protein. Here we report that the CUL-4A ubiquitylation machinery controls the stability of HOXA9 by promoting its ubiquitylation and proteasome-dependent degradation. The homeodomain of HOXA9 is responsible for CUL-4A-mediated degradation. Interfering CUL-4A biosynthesis by ectopic expression or by RNA-mediated interference resulted in alterations of the steady-state levels of HOXA9, mirrored by impairment of the ability of 32D myeloid progenitor cells to undergo proper terminal differentiation into granulocytes. These results revealed a novel regulatory mechanism of hematopoiesis by ubiquitin-dependent proteolysis.  (+info)

Alpha-defensin expression during myelopoiesis: identification of cis and trans elements that regulate expression of NP-3 in rat promyelocytes. (3/124)

Alpha-defensins are antimicrobial peptides that contribute to innate-immune functions of neutrophils and intestinal Paneth cells. Transcription of alpha-defensin genes occurs early in neutrophilic myelopoeisis. To examine the mechanisms that regulate alpha-defensin gene expression, we analyzed transcription of rat neutrophil alpha-defensin NP-3 in D4 cells, a subclone of the promyelocytic cell line IPC-81. Northern blot analysis showed that D4 cells express fivefold higher levels of alpha-defensin mRNA than the parental cell line in a manner relatively independent of passage number. Increased levels of steady-state mRNA in D4 cells correlated with markedly elevated peptide levels detected by immunocytochemical staining. To identify the cis-acting DNA elements involved in tissue-specific expression, D4 cells were transfected with luciferase reporter constructs containing NP-3 gene 5'-flanking sequences. Analyses of transfected D4 cells demonstrated that the proximal 87 base pair (bp) sequence contained cis-acting DNA elements necessary for optimal promoter activity. Mutational analyses within the 87-bp region suggested the involvement of the CAAT box and a putative polyoma enhancer-binding protein 2/core-binding factor (PEBP2/CBF) site in defensin gene transcription. Transient transfection analyses using tandem repeats of oligonucleotides containing these sequences demonstrated that proximity of the CAAT box and PEBP2/CBF site was important for defensin promoter activity. Electrophoretic mobility shift assays indicated that PEBP2/CBF or a PEBP2/CBF-related protein was involved in a specific protein-DNA interaction occurring within a DNA fragment containing the CAAT and PEBP2/CBF sequences. These data identify functional trans- and cis-elements that regulate rat defensin gene expression in high defensin-expressing promyelocytic cells.  (+info)

Influence of dosing schedule on toxicity and antitumor effects of a combination of adriamycin and docetaxel in mice. (4/124)

PURPOSE: Although the combination of Adriamycin (ADR) and docetaxel (DOC) showed a better cure rate against metastatic breast cancer in a clinical study, severe myelosuppression and cardiotoxicity were dose-limiting factors. The purpose of this study was to establish the most suitable dosing schedule to relieve severe adverse effects and improve the antitumor effects. EXPERIMENTAL DESIGN: Both ADR and DOC were administered simultaneously in the simultaneous-dosing group (ADR/DOC), whereas in the intermittent-dosing groups (ADR-DOC and DOC-ADR), the second drug was administered 12 h after the first drug. Leukocyte counts and survival were measured to estimate adverse effects. After administration, ADR and DOC concentrations in blood, myelocyte cells, and heart were determined. To clarify the antitumor effect, tumor growth was measured in Ehrlich-cell-bearing mice after the initiation of drug injections. RESULTS: The simultaneous-dosing group showed severe leukopenia compared with the saline-treated group. However, the toxicity was reduced in the intermittent-dosing groups. The DOC-ADR group showed the best survival rate in the dosing groups. In the pharmacokinetic study, ADR and DOC concentrations in plasma, myelocyte cells, and the heart were markedly higher in the simultaneous-dosing group than the intermittent-dosing groups. These results indicate that pharmacokinetic interactions may contribute to the change in leukopenia induced by concurrent administration of ADR and DOC. The antitumor effect in the DOC-ADR group was the highest in the dosing groups. CONCLUSIONS: In the present study, the findings suggest that ADR administered 12 h after DOC injection (DOC-ADR group) not only inhibits tumor growth more strongly but also significantly reduces leukopenia compared with results for the simultaneous-dosing (ADR/DOC) group and significantly reduced the number of toxic deaths compared with the other groups.  (+info)

c-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia. (5/124)

BACKGROUND: The c-Kit receptor is considered to play a crucial role in hematopoiesis. Induction of mobilization of hematopoietic cells in the bone marrow requires cooperative signaling through c-Kit and c-Kit ligand pathway, and these interactions are important in the retention of stem cells within the bone marrow. Therefore, we analyzed c-Kit density on the leukemic myeloblasts of patients with acute myeloid leukemia (AML) in relation to white blood cell count (WBC) in the peripheral blood. METHODS: Bone marrow aspirates collected from patients with AML and bone marrow aspirates and leukapheresis products after granulocyte colony-stimulating factor blood mobilization from adult volunteers were studied. To determine the level of c-Kit receptor expression, we applied quantitative (relative fluorescence intensity and antibody binding per cell) cytometric methods. RESULTS: Our data showed negative correlation between the level of c-Kit expression intensity on myeloblasts and the number of leukocytes in blood of AML patients. The c-Kit receptor density on myeloblasts in patients with low WBC was significantly stronger than that on myeloblasts in patients with high WBC. In the latter patient group, the density c-Kit receptor on myeloblasts was similar to that on CD34(+) cells in mobilized peripheral blood. CONCLUSIONS: The obtained data suggest an involvement of c-Kit receptor in the regulation of leukemic myeloblasts egress to the peripheral blood.  (+info)

Meningeal relapse in a patient with acute promyelocytic leukemia: a case report and review of the literature. (6/124)

The involvement of central nervous system is rare in acute promyelocytic leukemia (APL). We report a APL patient of a 41 yr-old Korean male who presented with fever and petechia. Complete molecular remission was achieved with all-trans retinoic acid (ATRA), idarubicin, and cytarabine. Ten months later, he complained of a mild headache. The results of the physical examination and the complete blood counts were normal. The examination of cerebrospinal fluid showed the presence of promyelocyte. Bone marrow studies showed cytogenetic remission but with molecular relapse. He was treated with intrathecal and systemic chemotherapy.  (+info)

Interference of BCR-ABL1 kinase activity with antigen receptor signaling in B cell precursor leukemia cells. (7/124)

The chromosomal translocation t,(9;22) resulting in the fusion of the BCR and ABL1 genes, represents a recurrent aberration in B cell precursor leukemia cells. Their normal counterparts, B cell precursor cells, are positively selected for survival signals through the antigen receptor, whose expression requires a functional immunoglobulin heavy chain (IGH) gene rearrangement. Unexpectedly, B cell precursor leukemia cells harboring a BCR-ABL1 gene rearrangement do not depend on antigen receptor mediated survival signals. Genes involved in the signaling cascade of the antigen receptor are silenced and in most cases, the dominant tumor clone does not carry a functional IGH gene rearrangement. However, upon inhibition of the BCR-ABL1 kinase activity by STI571, only leukemia cells expressing an antigen receptor are able to survive. Since resistance to STI571 is frequent in the therapy of BCR-ABL1(+) B cell precursor leukemia, antigen receptor signaling may represent a mechanism through which these cells can temporarily evade STI571-induced apoptosis. This may open a time frame, during which leukemia cells acquire secondary transforming events that confer definitive resistance to STI571.  (+info)

Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. (8/124)

Phagocytosis is a fundamental feature of the innate immune system, required for antimicrobial defense, resolution of inflammation, and tissue remodeling. Furthermore, phagocytosis is coupled to a diverse range of cytotoxic effector mechanisms, including the respiratory burst, secretion of inflammatory mediators and Ag presentation. Phospholipase D (PLD) has been linked to the regulation of phagocytosis and subsequent effector responses, but the identity of the PLD isoform(s) involved and the molecular mechanisms of activation are unknown. We used primary human macrophages and human THP-1 promonocytes to characterize the role of PLD in phagocytosis. Macrophages, THP-1 cells, and other human myelomonocytic cells expressed both PLD1 and PLD2 proteins. Phagocytosis of complement-opsonized zymosan was associated with stimulation of the activity of both PLD1 and PLD2, as demonstrated by a novel immunoprecipitation-in vitro PLD assay. Transfection of dominant-negative PLD1 or PLD2 each inhibited the extent of phagocytosis (by 55-65%), and their combined effects were additive (reduction of 91%). PLD1 and PLD2 exhibited distinct localizations in resting macrophages and those undergoing phagocytosis, and only PLD1 localized to the phagosome membrane. The COS-7 monkey fibroblast cell line, which has been used as a heterologous system for the analysis of receptor-mediated phagocytosis, expressed PLD2 but not PLD1. These data support a model in which macrophage phagocytosis is coordinately regulated by both PLD1 and PLD2, with isoform-specific localization. Human myelomonocytic cell lines accurately model PLD-dependent signal transduction events required for phagocytosis, but the heterologous COS cell system does not.  (+info)