The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. (1/6287)

The nuclear receptor (NR) superfamily is the most abundant class of transcriptional regulators encoded in the Caenorhabditis elegans genome, with >200 predicted genes revealed by the screens and analysis of genomic sequence reported here. This is the largest number of NR genes yet described from a single species, although our analysis of available genomic sequence from the related nematode Caenorhabditis briggsae indicates that it also has a large number. Existing data demonstrate expression for 25% of the C. elegans NR sequences. Sequence conservation and statistical arguments suggest that the majority represent functional genes. An analysis of these genes based on the DNA-binding domain motif revealed that several NR classes conserved in both vertebrates and insects are also represented among the nematode genes, consistent with the existence of ancient NR classes shared among most, and perhaps all, metazoans. Most of the nematode NR sequences, however, are distinct from those currently known in other phyla, and reveal a previously unobserved diversity within the NR superfamily. In C. elegans, extensive proliferation and diversification of NR sequences have occurred on chromosome V, accounting for > 50% of the predicted NR genes.  (+info)

Analysis of two cosmid clones from chromosome 4 of Drosophila melanogaster reveals two new genes amid an unusual arrangement of repeated sequences. (2/6287)

Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing approximately 5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met-hepatocyte growth factor receptor. The other cosmid contains only the two short 5'-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the beta-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome.  (+info)

Optical mapping of Plasmodium falciparum chromosome 2. (3/6287)

Detailed restriction maps of microbial genomes are a valuable resource in genome sequencing studies but are toilsome to construct by contig construction of maps derived from cloned DNA. Analysis of genomic DNA enables large stretches of the genome to be mapped and circumvents library construction and associated cloning artifacts. We used pulsed-field gel electrophoresis purified Plasmodium falciparum chromosome 2 DNA as the starting material for optical mapping, a system for making ordered restriction maps from ensembles of individual DNA molecules. DNA molecules were bound to derivatized glass surfaces, cleaved with NheI or BamHI, and imaged by digital fluorescence microscopy. Large pieces of the chromosome containing ordered DNA restriction fragments were mapped. Maps were assembled from 50 molecules producing an average contig depth of 15 molecules and high-resolution restriction maps covering the entire chromosome. Chromosome 2 was found to be 976 kb by optical mapping with NheI, and 946 kb with BamHI, which compares closely to the published size of 947 kb from large-scale sequencing. The maps were used to further verify assemblies from the plasmid library used for sequencing. Maps generated in silico from the sequence data were compared to the optical mapping data, and good correspondence was found. Such high-resolution restriction maps may become an indispensable resource for large-scale genome sequencing projects.  (+info)

Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. (4/6287)

Small polydisperse circular DNA (spcDNA) is a heterogeneous population of extrachromosomal circular molecules present in a large variety of eukaryotic cells. Elevated amounts of total spcDNA are related to endogenous and induced genomic instability in rodent and human cells. We suggested spcDNA as a novel marker for genomic instability, and speculated that spcDNA might serve as a mutator. In this study, we examine the presence of telomeric sequences on spcDNA. We report for the first time the appearance of telomeric repeats in spcDNA molecules (tel-spcDNA) in rodent and human cells. Restriction enzyme analysis indicates that tel-spcDNA molecules harbor mostly, if not exclusively, telomeric repeats. In rodent cells, tel-spcDNA levels are higher in transformed than in normal cells and are enhanced by treatment with carcinogen. Tel-spcDNA is also detected in some human tumors and cell lines, but not in others. We suggest, that its levels in human cells may be primarily related to the amount of the chromosomal telomeric sequences. Tel-spcDNA may serve as a unique mutator, through specific mechanisms related to the telomeric repeats, which distinguish it from the total heterogeneous spcDNA population. It may affect telomere dynamics and genomic instability by clastogenic events, alterations of telomere size and sequestration of telomeric proteins.  (+info)

Structure and inheritance of some heterozygous Robertsonian translocation in man. (5/6287)

Banding studies in 25 Robertsonian translocations showed that all could be interpreted as stable dicentrics. The mechanism for their stability is likely to be the proximity of their centromeres but centromeric suppression could also have a role. In many of these dicentric translocations, discontinuous centromeric suppression, as indicated by chromatid separation at one of the centromeric regions, was observed in C-banded preparations. A further observation of undefined relation to the first was that the ratio of the two constitutive centromeric heterochromatin (CCH) regions from the component chromosomes of the translocations was variable in the same translocation type, e.g. t(13;14). It is proposed that this ratio may influence the segregation ratio. Abnormal spermatogenesis is suggested as the likely mechanism for the difference in the proportion of aneuploid offspring in the progeny of maternal and paternal heterozygotes. Neither of the t dic(21;21)s could be interpreted as isochromosomes. It is proposed that Robertsonian fusion translocations be defined as stable, dicentric, whole-arm translocations, with both centromeres in a median position and resulting in the loss of a small acentric fragment during this formation. It is suggested that they occur at high frequency between telocentric or, as in man, certain acrocentric chromosomes because of some intrinsic property of those chromosomes not possessed by metacentric chromosomes and mediated by interphase association of centromeres.  (+info)

The RNA-editing enzyme ADAR1 is localized to the nascent ribonucleoprotein matrix on Xenopus lampbrush chromosomes but specifically associates with an atypical loop. (6/6287)

Double-stranded RNA adenosine deaminase (ADAR1, dsRAD, DRADA) converts adenosines to inosines in double-stranded RNAs. Few candidate substrates for ADAR1 editing are known at this point and it is not known how substrate recognition is achieved. In some cases editing sites are defined by basepaired regions formed between intronic and exonic sequences, suggesting that the enzyme might function cotranscriptionally. We have isolated two variants of Xenopus laevis ADAR1 for which no editing substrates are currently known. We demonstrate that both variants of the enzyme are associated with transcriptionally active chromosome loops suggesting that the enzyme acts cotranscriptionally. The widespread distribution of the protein along the entire chromosome indicates that ADAR1 associates with the RNP matrix in a substrate-independent manner. Inhibition of splicing, another cotranscriptional process, does not affect the chromosomal localization of ADAR1. Furthermore, we can show that the enzyme is dramatically enriched on a special RNA-containing loop that seems transcriptionally silent. Detailed analysis of this loop suggests that it might represent a site of ADAR1 storage or a site where active RNA editing is taking place. Finally, mutational analysis of ADAR1 demonstrates that a putative Z-DNA binding domain present in ADAR1 is not required for chromosomal targeting of the protein.  (+info)

Transient gene asymmetry during sporulation and establishment of cell specificity in Bacillus subtilis. (7/6287)

Sporulation in Bacillus subtilis is initiated by an asymmetric division generating two cells of different size and fate. During a short interval, the smaller forespore harbors only 30% of the chromosome until the remaining part is translocated across the septum. We demonstrate that moving the gene for sigmaF, the forespore-specific transcription factor, in the trapped region of the chromosome is sufficient to produce spores in the absence of the essential activators SpoIIAA and SpoIIE. We propose that transient genetic asymmetry is the device that releases SpoIIE phosphatase activity in the forespore and establishes cell specificity.  (+info)

A genome-wide screen for asthma-associated quantitative trait loci in a mouse model of allergic asthma. (8/6287)

Asthma is the most common illness of childhood, affecting one child in seven in the UK. Asthma has a genetic basis, but genetic studies of asthma in humans are confounded by uncontrolled environmental factors, varying penetrance and phenotypic pleiotropy. An animal model of asthma would offer controlled exposure, limited and consistent genetic variation, and unlimited size of sibships. Following immunization and subsequent challenge with ovalbumin, the Biozzi BP2 mouse shows features of asthma, including airway inflammation, eosinophil infiltration and non-specific bronchial responsiveness. In order to identify genetic loci influencing these traits, a cross was made between BP2 and BALB/c mice, and a genome-wide screen carried out in the F2progeny of the F1intercross. Five potentially linked loci were identified, four of which corresponded to human regions of syntenic homology that previously have shown linkage to asthma-associated traits.  (+info)