Zinc-metallothionein levels are correlated with enhanced glucocorticoid responsiveness in mouse cells exposed to ZnCl(2), HgCl(2), and heat shock. (49/427)

Metallothioneins (MTs) are the major low molecular weight, zinc-binding proteins in mammalian cells. It has been hypothesized that they play a role in the function of zinc-dependent signal transduction proteins and transcription factors. We investigated the capacity of zinc and other metal ions and conditions to increase both Zn-associated MT levels and the receptiveness of cells to transcriptional activation mediated by the zinc-dependent glucocorticoid receptor (GR). We studied, in a GR-responsive mouse mammary-tumor cell line, the ability of dexamethasone (DEX) to stimulate transcription of a chloramphenicol acetyltransferase (CAT) gene controlled by a mouse mammary-tumor virus promoter. In cells pretreated with 20 to 100 microM ZnCl(2), DEX-induced CAT activity correlated with zinc-induced MT levels. However, 0.05 to 0.5 microM CdCl(2) had no effect on CAT activity, despite an increase in Cd-associated MT. Copper-associated MT was detected in cells treated with 20 microM CuCl(2,) but there was no change in the level of Zn-MT, nor was CAT activity altered in cells exposed to 5 to 20 microM CuCl(2). These results may reflect a functional difference between zinc-associated MT, and MT associated with other metals. Significantly more CAT activity was observed in both heat-shocked cells and in cells exposed to 40 or 50 nM HgCl(2). Although absolute amounts of MT were unchanged by these two treatments, a higher percentage of total cellular zinc was associated with the MT protein fractions after treatment. Changes in GR levels could not account for variations in CAT activity. These data indicate that hormonal signalling can be altered by exposure to metal salts and heat shock, and the effect is correlated with the level of Zn-MT.  (+info)

Zinc inhibition of cAMP signaling. (50/427)

Zn(2+) is required as either a catalytic or structural component for a large number of enzymes and thus contributes to a variety of important biological processes. We report here that low micromolar concentrations of Zn(2+) inhibited hormone- or forskolin-stimulated cAMP production in N18TG2 neuroblastoma cells. Similarly, low concentrations inhibited hormone- and forskolin-stimulated adenylyl cyclase (AC) activity in membrane preparations and did so primarily by altering the V(max) of the enzyme. Zn(2+) also inhibited recombinant isoforms, indicating that this reflects a direct interaction with the enzyme. The IC(50) for Zn(2+) inhibition was approximately 1-2 microm with a Hill coefficient of 1.33. The dose-response curve for Zn(2+) inhibition was identical for AC1, AC5, and AC6 as well as for the C441R mutant of AC5 whose defect appears to be in one of the catalytic metal binding sites. However, AC2 displayed a distinct dose-response curve. These data in combination with the findings that Zn(2+) inhibition was not competitive with Mg(2+) or Mg(2+)/ATP suggest that the inhibitory Zn(2+) binding site is distinct from the metal binding sites involved in catalysis. The prestimulated enzyme was found to be less susceptible to Zn(2+) inhibition, suggesting that the ability of Zn(2+) to inhibit AC could be significantly influenced by the coincidence timing of the input signals to the enzyme.  (+info)

The risk to the United Kingdom population of zinc cadmium sulfide dispersion by the Ministry of Defence during the "cold war". (51/427)

OBJECTIVES: To estimate exposures to cadmium (Cd) received by the United Kingdom population as a result of the dispersion of zinc Cd sulfide (ZnCdS) by the Ministry of Defence between 1953 and 1964, as a simulator of biological warfare agents. METHODS: A retrospective risk assessment study was carried out on the United Kingdom population during the period 1953-64. This determined land and air dispersion of ZnCdS over most of the United Kingdom, inhalation exposure of the United Kingdom population, soil contamination, and risks to personnel operating equipment that dispersed ZnCdS. RESULTS: About 4600 kg ZnCdS were dispersed from aircraft and ships, at times when the prevailing winds would allow large areas of the country to be covered. Cadmium released from 44 long range trials for which data are available, and extrapolated to a total of 76 trials to allow for trials with incomplete information, is about 1.2% of the estimated total release of Cd into the atmosphere over the same period. "Worst case" estimates are 10 microg Cd inhaled over 8 years, equivalent to Cd inhaled in an urban environment in 12100 days, or from smoking 100 cigarettes. A further 250 kg ZnCdS was dispersed from the land based sites, but significant soil contamination occurred only in limited areas, which were and have remained uninhabited. Of the four personnel involved in the dispersion procedures (who were probably exposed to much higher concentrations of Cd than people on the ground), none are suspected of having related illnesses. CONCLUSION: Exposure to Cd from dissemination of ZnCdS during the "cold war" should not have resulted in adverse health effects in the United Kingdom population.  (+info)

Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. (52/427)

Multiple studies implicate metals in the pathophysiology of neurodegenerative diseases. Disturbances in brain iron metabolism are linked with synucleinopathies. For example, in Parkinson's disease, iron levels are increased and magnesium levels are reduced in the brains of patients. To understand how changes in iron and magnesium might affect the pathophysiology of Parkinson's disease, we investigated binding of iron to alpha-synuclein, which accumulates in Lewy bodies. Using fluorescence of the four tyrosines in alpha-synuclein as indicators of metal-related conformational changes in alpha-synuclein, we show that iron and magnesium both interact with alpha-synuclein. alpha-Synuclein exhibits fluorescence peaks at 310 and 375 nm. Iron lowers both fluorescence peaks, while magnesium increases the fluorescence peak only at 375 nm, which suggests that magnesium affects the conformation of alpha-synuclein differently than iron. Consistent with this hypothesis, we also observe that magnesium inhibits alpha-synuclein aggregation, measured by immunoblot, cellulose acetate filtration, or thioflavine-T fluorescence. In each of these studies, iron increases alpha-synuclein aggregation, while magnesium at concentrations >0.75 mm inhibits the aggregation of alpha-synuclein induced either spontaneously or by incubation with iron. These data suggest that the conformation of alpha-synuclein can be modulated by metals, with iron promoting aggregation and magnesium inhibiting aggregation.  (+info)

Acid secretion and proton conductance in human airway epithelium. (53/427)

Acid secretion and proton conductive pathways across primary human airway surface epithelial cultures were investigated with the pH stat method in Ussing chambers and by single cell patch clamping. Cultures showed a basal proton secretion of 0.17 +/- 0.04 micromol.h(-1).cm(-2), and mucosal pH equilibrated at 6.85 +/- 0.26. Addition of histamine or ATP to the mucosal medium increased proton secretion by 0.27 +/- 0.09 and 0.24 +/- 0.09 micromol.h(-1).cm(-2), respectively. Addition of mast cells to the mucosal medium of airway cultures similarly activated proton secretion. Stimulated proton secretion was similar in cultures bathed mucosally with either NaCl Ringer or ion-free mannitol solutions. Proton secretion was potently blocked by mucosal ZnCl(2) and was unaffected by mucosal bafilomycin A(1), Sch-28080, or ouabain. Mucosal amiloride blocked proton secretion in tissues that showed large amiloride-sensitive potentials. Proton secretion was sensitive to the application of transepithelial current and showed outward rectification. In whole cell patch-clamp recordings a strongly outward-rectifying, zinc-sensitive, depolarization-activated proton conductance was identified with an average chord conductance of 9.2 +/- 3.8 pS/pF (at 0 mV and a pH 5.3-to-pH 7.3 gradient). We suggest that inflammatory processes activate proton secretion by the airway epithelium and acidify the airway surface liquid.  (+info)

The 11 beta-hydroxysteroid dehydrogenase type 2 activity in human placental microsomes is inactivated by zinc and the sulfhydryl modifying reagent N-ethylmaleimide. (54/427)

Proper glucocorticoid exposure in utero is vital to normal fetal organ growth and maturation. The human placental 11 beta-hydroxysteroid dehydrogenase type 2 enzyme (11 beta-HSD2) catalyzes the unidirectional conversion of cortisol to its inert metabolite cortisone, thereby controlling fetal exposure to maternal cortisol. The present study examined the effect of zinc and the relatively specific sulfhydryl modifying reagent N-ethylmaleimide (NEM) on the activity of 11 beta-HSD2 in human placental microsomes. Enzyme activity, reflected by the rate of conversion of cortisol to cortisone, was inactivated by NEM (IC(50)=10 microM), while the activity was markedly increased by the sulfhydryl protecting reagent dithiothreitol (DTT; EC(50)=1 mM). Furthermore, DTT blocked the NEM-induced inhibition of 11 beta-HSD2 activity. Taken together, these results suggested that the sulfhydryl (SH) group(s) of the microsomal 11 beta-HSD2 may be critical for enzyme activity. Zn(2+) also inactivated enzyme activity (IC(50)=2.5 microM), but through a novel mechanism not involving the SH groups. In addition, prior incubation of human placental microsomes with NAD(+) (cofactor) but not cortisol (substrate) resulted in a concentration-dependent increase (EC(50)=8 microM) in 11 beta-HSD2 activity, indicating that binding of NAD(+) to the microsomal 11 beta-HSD2 facilitated the conversion of cortisol to cortisone. Thus, this finding substantiates the previously proposed concept that a compulsorily ordered ternary complex mechanism may operate for 11 beta-HSD2, with NAD(+) binding first, followed by a conformational change allowing cortisol binding with high affinity. Collectively, the present results suggest that cellular mechanisms of SH group modification and intracellular levels of Zn(2+) may play an important role in regulation of placental 11 beta-HSD2 activity.  (+info)

An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. (55/427)

By proteomic analysis we found a 21-kDa protein (P21) from Acidithiobacillus ferrooxidans ATCC 19859 whose synthesis was greatly increased by growth of the bacteria in pyrite, thiosulfate, elemental sulfur, CuS, and ZnS and was almost completely repressed by growth in ferrous iron. After we determined the N-terminal amino acid sequence of P21, we used the available preliminary genomic sequence of A. ferrooxidans ATCC 23270 to isolate the DNA region containing the p21 gene. The nucleotide sequence of this DNA fragment contained a putative open reading frame (ORF) coding for a 23-kDa protein. This difference in size was due to the presence of a putative signal peptide in the ORF coding for P21. When p21 was cloned and overexpressed in Escherichia coli, the signal peptide was removed, resulting in a mature protein with a molecular mass of 21 kDa and a calculated isoelectric point of 9.18. P21 exhibited 27% identity and 42% similarity to the Deinococcus radiodurans thiosulfate-sulfur transferase (rhodanese; EC 2.8.1.1) and similar values in relation to other rhodaneses, conserving structural domains and an active site with a cysteine, both characteristic of this family of proteins. However, the purified recombinant P21 protein did not show rhodanese activity. Unlike cytoplasmic rhodaneses, P21 was located in the periphery of A. ferrooxidans cells, as determined by immunocytochemical analysis, and was regulated depending on the oxidizable substrate. The genomic context around gene p21 contained other ORFs corresponding to proteins such as thioredoxins and sulfate-thiosulfate binding proteins, clearly suggesting the involvement of P21 in inorganic sulfur metabolism in A. ferrooxidans.  (+info)

Insulin-like growth factor-binding protein-3 activates a phosphotyrosine phosphatase. Effects on the insulin-like growth factor signaling pathway. (56/427)

The proliferative action of insulin-like growth factors (IGF-I and -II) is mediated via the type I IGF receptor (IGF-IR) and is modulated by their association with high affinity binding proteins, IGFBP-1 to -6. We recently found that, in addition to its ability to bind IGFs, IGFBP-3 also inhibits IGF-IR activation independently of IGF binding and without interacting directly with IGF-IR. Here, we show that IGFBP-3 is capable of blocking the signal triggered by IGFs. Breast carcinoma-derived cells (MCF-7) were stimulated by des(1-3)IGF-I or [Gln(3),Ala(4),Tyr(15),Leu(16)]IGF-I, two IGF analogues with intact affinity for IGF-IR, but with weak or virtually no affinity for IGFBPs, then incubated with IGFBP-3. The activated IGF-IR was desensitized through reversal of its autophosphorylation, following which both phosphatidylinositol 3-kinase and p42(MAPK) activities were depressed. Direct measurement of phosphotyrosine phosphatase activity and reconstitution experiments using tyrosine-phosphorylated insulin receptor substrate-1 (IRS-1) indicated that IGFBP-3 activated a phosphotyrosine phosphatase (PTPase). This action appeared to be peculiar to IGFBP-3 among the IGFBPs, since neither IGFBP-1 nor IGFBP-5 (structurally the closest to IGFBP-3), had any such effect. Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific. Although the precise nature of the phosphatase remains to be determined, the results of this study demonstrate that IGFBP-3 stimulates a phosphotyrosine phosphatase activity that down-regulates the IGF-I signaling pathway, suggesting a major role for IGFBP-3 in regulating cell proliferation.  (+info)