Phosphorylation and regulation of choline kinase from Saccharomyces cerevisiae by protein kinase A. (1/136)

The CKI1-encoded choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from Saccharomyces cerevisiae was phosphorylated in vivo on multiple serine residues. Activation of protein kinase A activity in vivo resulted in a transient increase in the phosphorylation of choline kinase. This phosphorylation was accompanied by a stimulation in choline kinase activity. In vitro, protein kinase A phosphorylated choline kinase on a serine residue with a stoichiometry (0.44 mol of phosphate/mol of choline kinase) consistent with one phosphorylation site/choline kinase subunit. The major phosphopeptide derived from the enzyme phosphorylated in vitro by protein kinase A was common to one of the major phosphopeptides derived from the enzyme phosphorylated in vivo. Protein kinase A activity was dose- and time-dependent and dependent on the concentrations of ATP (Km 2.1 microM) and choline kinase (Km 0.12 microM). Phosphorylation of choline kinase with protein kinase A resulted in a stimulation (1.9-fold) in choline kinase activity whereas alkaline phosphatase treatment of choline kinase resulted in a 60% decrease in choline kinase activity. The mechanism of the protein kinase A-mediated stimulation in choline kinase activity involved an increase in the apparent Vmax values with respect to ATP (2.6-fold) and choline (2.7-fold). Overall, the results reported here were consistent with the conclusion that choline kinase was regulated by protein kinase A phosphorylation.  (+info)

In vivo antitumor activity of choline kinase inhibitors: a novel target for anticancer drug discovery. (2/136)

Transformation by some oncogenes is associated with increased activity of choline kinase (ChoK), resulting in elevated constitutive levels of phosphorylcholine, a proposed second messenger required for DNA synthesis induced by growth factors. Here we describe the characterization of ChoK inhibitors with antiproliferative properties against human tumor-derived cell lines. The new molecules were tolerated in mice at doses that showed in vivo antitumor activity against human tumor xenografts derived from HT-29 and A431 cell lines implanted s.c. in nude mice. This first generation of inhibitors provides in vivo evidence that blockade of phosphorylcholine production is a valid strategy for the development of new anticancer agents, opening a new avenue for the development of antitumor drugs with a novel mechanism of action.  (+info)

Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin and insulin-like growth factor I in fibroblasts. (3/136)

In serum-starved mouse NIH 3T3 fibroblasts cultured in 1.8 mM Ca2+-containing medium, addition of 0.75-2 mM extra Ca2+ stimulated DNA synthesis in synergism with zinc (15-60 microM), insulin and insulin-like growth factor I. Extra Ca2+ stimulated phosphorylation/activation of p42/p44 mitogen-activated protein kinases by an initially (10 min) zinc-independent mechanism; however, insulin, and particularly zinc, significantly prolonged Ca2+-induced mitogen-activated protein kinase phosphorylation. In addition, extra Ca2+ activated p70 S6 kinase by a zinc-dependent mechanism and enhanced the stimulatory effect of zinc on choline kinase activity. Insulin and insulin-like growth factor I also commonly increased both p70 S6 kinase and choline kinase activities. In support of the role of the choline kinase product phosphocholine in the mediation of mitogenic Ca2+ effects, cotreatments with the choline kinase substrate choline (250 microM) and the choline kinase inhibitor hemicholinium-3 (2 mM) enhanced and inhibited, respectively, the combined stimulatory effect of extra Ca2+ (3.8 mM total) and zinc on DNA synthesis. In various human skin fibroblast lines, 1-2 mM extra Ca2+ also stimulated DNA synthesis in synergism with zinc and insulin. The results show that in various fibroblast cultures, high concentrations of extracellular Ca2+ can collaborate with zinc and certain growth factors to stimulate DNA synthesis. Considering the high concentration of extracellular Ca2+ in the dermal layer, Ca2+ may promote fibroblast growth during wound healing in concert with zinc, insulin growth factor-I insulin, and perhaps other growth factors.  (+info)

Structure and characterization of the genes for murine choline/ethanolamine kinase isozymes alpha and beta. (4/136)

Choline/ethanolamine kinase (CK/EK) is the first enzyme in phosphatidylcholine/phosphatidylethanolamine biosynthesis in all animal cells. The highly purified CKs from mammalian sources and their recombinant gene products so far were all shown to have EK activity also, indicating that both activities reside on the same protein. CK/EK in most animal cells exists as several isoforms, for two of which (alpha and beta) their cDNAs have been cloned from both the rat and mouse, and they are found to be separate gene products. The physiological significance for the existence of more than one CK/EK enzyme, however, remains to be clarified. In this study, we isolated mouse genes encoding both types of CK/EK isozyme and determined their entire structure. The 5'-flanking promoter regions were found to have quite different features from each other, indicating that their expression could be under distinct control. Comparison of the nucleotide sequence between the corresponding coding exons showed the best homology (75%) residing on exon VIII. A search of the database resulted in the possible existence of 17 different origins of eukaryotic CK and/or EK, each of which presumably contained the entire amino acid sequence. Multialignment of their putative amino acid sequences led to an identification of the novel consensus sequence possibly required for the expression of either CK or EK activity, which corresponded to the sequence within exons VII and VIII of CK/EK-alpha and -beta genes from the mouse. This sequence was localized in close proximity to the C-terminal region of the general (Brenner's) phosphotransferase concensus sequence which was also completely conserved in all of the putative eukaryotic CK/EK proteins. The results demonstrated that, while both CK/EK-alpha and -beta genes were composed of 11 major exons, the size of their genes was quite different: 40 kb for CK/EK-alpha, whereas it was only 3.5 kb for CK/EK-beta.  (+info)

Novel expression of equivocal messages containing both regions of choline/ethanolamine kinase and muscle type carnitine palmitoyltransferase I. (5/136)

For characterization of the detailed gene structure of human muscle type carnitine palmitoyltransferase I (M-CPTI), we analyzed the 5'-upstream region of the M-CPTI transcripts. As a result, we found a cDNA clone containing a nucleotide sequence unexpected from the reported M-CPTI gene structure in the upstream region of its 5' end. Comparison of this nucleotide sequence with that of genomic DNA showed that this sequence was derived from the 3'-untranslated region of the gene encoding choline/ethanolamine kinase-beta (CK/EK-beta) located upstream of the M-CPTI gene. Southern blot analysis showed that there was no other region homologous to the CK/EK-beta gene in the whole human genome. Thus, the overlapping transcript was concluded to be produced from the functional genes of CK/EK-beta and M-CPTI. Furthermore, cDNAs containing both exons of these genes were detected by the polymerase chain reaction using the cDNA of human heart M-CPTI obtained by specific reverse transcription from its 3'-untranslated region as a template. From these results, the production and organization of these overlapping transcripts are discussed.  (+info)

Pharmacological inhibition of phosphatidylcholine biosynthesis is associated with induction of phosphatidylinositol accumulation and cytolysis of neoplastic cell lines. (6/136)

De novo production of phosphatidic acid (PA) in tumor cells is required for phospholipid biosynthesis and growth of tumor cells. In addition, PA production by phospholipase D has been cited among the effects of certain oncogenes and growth factors. In this report, it has been demonstrated that enhanced phospholipid metabolism through PA in tumor cells can be exploited pharmacologically for development of anticancer agents, such as CT-2584, a cancer chemotherapeutic drug candidate currently in Phase II clinical trials. By inhibiting CTP:choline-phosphate cytidylyltransferase (CT), CT-2584 caused de novo phospholipid biosynthesis via PA to be shunted away from phosphatidylcholine (PC) and into phosphatidylinositol (PI), the latter of which was doubled in a variety of CT-2584-treated tumor cell lines. In contrast, cytotoxic concentrations of cisplatin did not induce accumulation of PI, indicating that PI elevation by CT-2584 was not a general consequence of chemotherapy-induced cell death. Consistent with this mechanism of action, propranolol, an inhibitor of PA phosphohydrolase and phosphatidylcholine biosynthesis, was also cytotoxic to tumor cell lines, induced PI accumulation, and potentiated the activity of CT-2584 in cytotoxicity assays. As expected from biophysical properties of anionic phospholipids on cellular membranes, CT-2584 cytotoxicity was associated with disruption and swelling of endoplasmic reticulum and mitochondria. We conclude that CT-2584 effects a novel mechanism of cytotoxicity to cancer cells, involving a specific modulation of phospholipid metabolism.  (+info)

Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. (7/136)

Hexadecylphosphorylcholine (HePC, D-18506, INN: Mitelfosine) belongs to the family of alkylphosphocholines with anticancer activity. Previous reports have related its antitumoral activity to their ability to interfere with phospholipid metabolism. However a clear mechanism of action has not been established yet. We have investigated the effect of HePC on two enzymes recently reported to play a role in cell growth proliferation, phospholipase D (PLD) and choline kinase (ChoK). Our results demonstrate that treatment with HePC induces a rapid stimulation of PLD, that may be achieved by PKC dependent or independent mechanisms, depending on the cell line investigated. Both PLD1 and PLD2 isoenzymes are sensitive to HePC activation. By contrast, no effect was observed by HePC on ChoK, a new target for anticancer drug development. Furthermore, in all cell lines tested, a chronic exposure of the cells to HePC abrogates PLD activation by either phorbol esters or HePC itself with no effect on total cellular PLD levels. This is reflected in a strong inhibition of PLD activity. We suggest that the inhibitory effects on PLD by HePC may be related to its antitumoral action.  (+info)

Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K. (8/136)

Ras proteins are molecular switches that control signaling pathways critical in the onset of a variety of human cancers. The signaling pathways activated by Ras proteins are those controlled by its direct effectors such as the serine-threonine protein kinase Raf-1, the exchange factor for other GTPases Ral-GDS, and the lipid kinase PI3K. As a consequence of Ras activation, a number of additional enzymes are affected, including several members of the serine-threonine intracellular proteins kinases as well as enzymes related to phospholipid metabolism regulation such as phospholipases A2 and D, and choline kinase. The precise mechanisms by which ras oncogenes impinge into these later molecules and their relevance to the onset of the carcinogenic process is still not fully understood. Here we have investigated the mechanism of regulation of choline kinase by Ras proteins and found no direct link between PLD and choline kinase activation. We provide evidence that Ras proteins regulate the activity of choline kinase through its direct effectors Ral-GDS and PI3K, while the Raf pathways seems to be not relevant in this process. The importance of Ras-dependent activation of choline kinase is discussed.  (+info)