Hypothermia and the trauma patient. (57/3556)

Hypothermia has profound effects on every system in the body, causing an overall slowing of enzymatic reactions and reduced metabolic requirements. Hypothermic, acutely injured patients with multisystem trauma have adverse outcomes when compared with normothermic control patients. Trauma patients are inherently predisposed to hypothermia from a variety of intrinsic and iatrogenic causes. Coagulation and cardiac sequelae are the most pertinent physiological concerns. Hypothermia and coagulopathy often mandate a simplified approach to complex surgical problems. A modification of traditional classification systems of hypothermia, applicable to trauma patients is suggested. There are few controlled investigations, but clinical opinion strongly supports the active prevention of hypothermia in the acutely traumatized patient. Preventive measures are simple and inexpensive, but the active reversal of hypothermia in much more complicated, often invasive and controversial. The ideal method of rewarming is unclear but must be individualized to the patient and institution specific. An algorithm reflecting newer approaches to traumatic injury and technical advances in equipment and techniques is suggested. Conversely, hypothermia has selected clinical benefits when appropriately used in cases of trauma. Severe hypothermia has allowed remarkable survivals in the course of accidental circulatory arrest. The selective application of mild hypothermia in severe traumatic brain injury is an area with promise. Deliberate circulatory arrest with hypothermic cerebral protection has also been used for seemingly unrepairable injuries and is the focus of ongoing research.  (+info)

Comparison of low-molecular-weight heparin (enoxaparin sodium) and standard unfractionated heparin for haemodialysis anticoagulation. (58/3556)

BACKGROUND: Low-molecular-weight heparin (LMWH) has been suggested as providing safe, efficient, convenient and possibly more cost-effective anticoagulation for haemodialysis (HD) than unfractionated heparin, with fewer side-effects and possible benefits on uraemic dyslipidaemia. METHODS: In this prospective, randomized, cross-over study we compared the safety, clinical efficacy and cost effectiveness of Clexane (enoxaparin sodium; Rhone-Poulenc Rorer) with unfractionated heparin in 36 chronic HD patients. They were randomly assigned to either Clexane (1 mg/kg body weight, equivalent to 100 IU) or standard heparin, and followed prospectively for 12 weeks (36 dialyses) before crossing over to the alternate therapy for a further 12 weeks. Heparin anticoagulation was monitored using activated coagulation times. RESULTS: Dialysis with Clexane resulted in less frequent minor fibrin/clot formation in the dialyser and lines than with heparin (P<0.001), but was accompanied by increased frequency of minor haemorrhage between dialyses (P<0.001). Clexane dose reduction (to a mean of 0.69 mg/kg) eliminated excess minor haemorrhage without increasing clotting frequencies. Mean vascular compression times were similar in both groups. Over 24 weeks, no changes in standard serum lipid profiles were observed. CONCLUSIONS: This study suggests that a single-dose protocol of Clexane is an effective and very convenient alternative to sodium heparin, but currently direct costs are about 16% more. We recommend an initial dose of 0.70 mg/kg.  (+info)

Bovine factor X1 (Stuart factor). Primary structure of the light chain. (59/3556)

The amino-acid sequence of the light chain of bovine factor X1 is presented. The sequence of 112 of the 140 residues was determined automatically on fragments produced by specific cleavage of arginyl, glutamyl, tryptophanyl, and asparaginyl-glycine bonds. The remainder was determined by conventional procedures. The amino-terminal sequence of the light chain is homologous with the amino-terminal region of bovine prothrombin and, like the latter, appears to contain several residues of a recently discovered unusual amino acid, lambda-carboxy-glutamic acid. The role of this amino acid in the calcium-binding ability of factor X and prothrombin is discussed.  (+info)

Structural origins of fibrin clot rheology. (60/3556)

The origins of clot rheological behavior associated with network morphology and factor XIIIa-induced cross-linking were studied in fibrin clots. Network morphology was manipulated by varying the concentrations of fibrinogen, thrombin, and calcium ion, and cross-linking was controlled by a synthetic, active-center inhibitor of FXIIIa. Quantitative measurements of network features (fiber lengths, fiber diameters, and fiber and branching densities) were made by analyzing computerized three-dimensional models constructed from stereo pairs of scanning electron micrographs. Large fiber diameters and lengths were established only when branching was minimal, and increases in fiber length were generally associated with increases in fiber diameter. Junctions at which three fibers joined were the dominant branchpoint type. Viscoelastic properties of the clots were measured with a rheometer and were correlated with structural features of the networks. At constant fibrinogen but varying thrombin and calcium concentrations, maximal rigidities were established in samples (both cross-linked and noncross-linked) which displayed a balance between large fiber sizes and great branching. Clot rigidity was also enhanced by increasing fiber and branchpoint densities at greater fibrinogen concentrations. Network morphology is only minimally altered by the FXIIIa-catalyzed cross-linking reaction, which seems to augment clot rigidity most likely by the stiffening of existing fibers.  (+info)

Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology. (61/3556)

We investigated the origins of greater clot rigidity associated with FXIIIa-dependent cross-linking. Fibrin clots were examined in which cross-linking was controlled through the use of two inhibitors: a highly specific active-center-directed synthetic inhibitor of FXIIIa, 1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio]imidazolium trifluoromethylsulfonate, and a patient-derived immunoglobulin directed mainly against the thrombin-activated catalytic A subunits of thrombin-activated FXIII. Cross-linked fibrin chains were identified and quantified by one- and two-dimensional gel electrophoresis and immunostaining with antibodies specific for the alpha- and gamma-chains of fibrin. Gamma-dimers, gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrids were detected. The synthetic inhibitor was highly effective in preventing the production of all cross-linked species. In contrast, the autoimmune antibody of the patient caused primarily an inhibition of alpha-chain cross-linking. Clot rigidities (storage moduli, G') were measured with a cone and plate rheometer and correlated with the distributions of the various cross-linked species found in the clots. Our findings indicate that the FXIIIa-induced dimeric cross-linking of gamma-chains by itself is not sufficient to stiffen the fibrin networks. Instead, the augmentation of clot rigidity was more strongly correlated with the formation of gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrid cross-links. A mechanism is proposed to explain how these cross-linked species may enhance clot rigidity.  (+info)

Inhibition of tissue factor pathway during intermittent pneumatic compression: A possible mechanism for antithrombotic effect. (62/3556)

Intermittent pneumatic compression (IPC) devices are an effective prophylaxis against lower extremity deep vein thrombosis. Their antithrombotic effect has been attributed to a reduction in venous stasis and enhanced fibrinolysis. The initiating mechanism for blood coagulation is the tissue factor (TF) dependent pathway, which is inhibited by tissue factor pathway inhibitor (TFPI). We have investigated the effect of IPC on the TF pathway in 6 normal subjects and 6 patients with postthrombotic venous disease undergoing IPC for 120 minutes; all subjects were studied with each of 5 IPC devices. In normal subjects and patients, plasma factor VIIa (FVIIa) activity (the activated form of factor VII [FVII]) declined from mean values ranging 51 to 65 and 50 to 53 mU/mL before IPC with different devices to 10 to 13 and 20 to 22 mU/mL at 180 minutes, respectively (P<0.001 for all groups). FVII antigen levels were unchanged. Plasma TFPI (P<0.001) rose from mean baseline values ranging 69 to 79 and 57 to 61 ng/mL to 76 to 123 and 71 to 79 ng/mL at 180 minutes in normal subjects and patients, respectively (P<0. 001 for all groups). Plasma prothrombin fragment F1.2 levels showed minimal changes. There was an inverse relationship between TFPI and FVIIa in normal subjects (r=-0.31, P=0.001) and patients (r=-0.37, P<0.001). IPC results in an increase in plasma TFPI and decline in FVIIa. Inhibition of TF pathway, the initiating mechanism of blood coagulation, is a possible mechanism for the antithrombotic effect of IPC.  (+info)

Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp (Penaeus monodon). (63/3556)

To investigate the coagulation system in crustacean decapoda, a homodimeric glycoprotein of 380 kDa was purified from the hemolymph of tiger shrimp (Penaeus monodon) by sequential DEAE anion exchange chromatography. The purified protein was coagulated by the shrimp hemocyte transglutaminase in the presence of Ca2+. The clottable protein contains 44% alpha helices and 26% beta sheets as determined by circular dichroism spectra. Its conformation is stable in buffer of pH 4-9. To solve its primary structure, partial sequences of the purified polypeptides from cyanogen bromide cleavage and endopeptidase digestion were also determined. A shrimp cDNA expression library was constructed. By combination with antibody screening, reverse transcriptase PCR using degenerate primers from determined amino acid sequences and cDNA library screening with digoxigenin-labeled DNA probes, the entire cDNA of 6124 bp was obtained. This cDNA encodes a protein of 1670 amino acids, including a 14-amino acid signal peptide. With four potential N-glycosylation sites, the clottable protein was found to contain 3.8% high-mannose glycan; and Man8GlcNAc and Man9GlcNAc were released upon endo-beta-N-acetylglucosaminidase hydrolysis. Upon conducting a protein sequence database survey, the shrimp clottable protein shows 36% identities to the crayfish clotting protein and lower similarities to members of insect vitellogenins, apolipoprotein B and mammalian von Willebrand factor. Notably, a region rich in Gln residues, a polyGln motif and five Ser-Lys-Thr-Ser repeats are present in the shrimp protein, suggesting this protein might be a transglutaminase substrate. Northern blot analysis revealed that the clottable protein is expressed in most of the shrimp tissues but not in the mature hemocytes.  (+info)

Inhibition of activated protein C anticoagulant activity by prothrombin. (64/3556)

In this study, we test the hypothesis that prothrombin levels may modulate activated protein C (APC) anticoagulant activity. Prothrombin in purified systems or plasma dramatically inhibited the ability of APC to inactivate factor Va and to anticoagulate plasma. This was not due solely to competition for binding to the membrane surface, as prothrombin also inhibited factor Va inactivation by APC in the absence of a membrane surface. Compared with normal factor Va, inactivation of factor Va Leiden by APC was much less sensitive to prothrombin inhibition. This may account for the observation that the Leiden mutation has less of an effect on plasma-based clotting assays than would be predicted from the purified system. Reduction of protein C levels to 20% of normal constitutes a significant risk of thrombosis, yet these levels are observed in neonates and patients on oral anticoagulant therapy. In both situations, the correspondingly low prothrombin levels would result in an increased effectiveness of the remaining functional APC of approximately 5-fold. Thus, while the protein C activation system is impaired by the reduction in protein C levels, the APC that is formed is a more effective anticoagulant, allowing protein C levels to be reduced without significant thrombotic risk. In situations where prothrombin is high and protein C levels are low, as in early stages of oral anticoagulant therapy, the reduction in protein C would result only in impaired function of the anticoagulant system, possibly explaining the tendency for warfarin-induced skin necrosis.  (+info)