Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. (1/178)

A role of membrane microparticles (MP) released by vascular cells in endothelial cell (EC) activation was investigated. Flow cytofluorimetric analysis of blood samples from normal volunteers revealed the presence of an heterogeneous MP population, which increased by approximately 2-fold after inflammatory stimulation with the chemotactic peptide, N-formyl-Met-Leu-Phe (2,799 +/- 360 versus 5241 +/- 640, p < 0.001). Blood-derived MP stimulated release of EC cytokines interleukin (IL)-6 (377 +/- 68 pg/ml) and MCP-1 (1, 282 +/- 79) and up-regulated de novo expression of tissue factor on the EC surface. This was associated with generation of a factor Xa-dependent procoagulant response (2.28 +/- 0.56 nM factor Xa/min/10(4) cells), in a reaction inhibited by a monoclonal antibody to tissue factor. Fluorescent labeling with antibodies to platelet GPIbalpha or leukocyte lactoferrin demonstrated that circulating MP originated from both platelets and leukocytes. However, depletion of platelet MP with an antibody to GPIbalpha did not reduce EC IL-6 release, and, similarly, MP from thrombin-stimulated platelets did not induce IL-6 release from endothelium. EC stimulation with leukocyte MP did not result in activation of the transcription factor NF-kappaB and was not associated with tyrosine phosphorylation of extracellular signal-regulated protein kinase, ERK1. In contrast, leukocyte MP stimulated a sustained, time-dependent increased tyrosine phosphorylation of approximately 46-kDa c-Jun NH(2)-terminal kinase (JNK1) in EC. These findings demonstrate that circulating leukocyte MP are up-regulated by inflammatory stimulation in vivo and activate a stress signaling pathway in EC, leading to increased procoagulant and proinflammatory activity. This may provide an alternative mechanism of EC activation, potentially contributing to dysregulation of endothelial functions during vascular injury.  (+info)

Procoagulant effect of anti-beta2-glycoprotein I antibodies with lupus anticoagulant activity. (2/178)

Prothrombin time (PT) is routinely used to monitor oral anticoagulant treatment in patients with the antiphospholipid antibody syndrome (APS). The fact that PT is a phospholipid (PL)-dependent coagulation test raises the possibility that lupus anticoagulant (LA) might interfere with this test, thus complicating the control of anticoagulant treatment. The effect of 6 affinity-purified preparations of anti- (a)beta2-glycoprotein I (GPI) antibodies with LA activity on the PT was tested. Instead of prolonging PT as expected, the abeta2-GPI antibodies reduced the PT of both normal plasma and anticoagulated plasma by a mean of 2.4 seconds and 5.6 seconds, respectively. This effect was also observed using other 5 commercially available preparations of thromboplastin. The abeta2-GPI-mediated reduction in PT was dose-dependent and was lost upon removal of beta2-GPI. The failure of abeta2-GPI antibodies to express LA activity in PT was found to depend on the fact that calcium ions were added together with PL at the beginning of the assay. In fact, modification of the standard diluted Russell viper venom time (dRVVT) test by adding calcium ions together with PL resulted in a loss of abeta2-GPI anticoagulant activity. The procoagulant effect was not as evident in an assay that used stimulated monocytes as a source of thromboplastin. These results show that abeta2-GPI antibodies exhibit an 'in vitro' procoagulant effect in PT and an anticoagulant effect in dRVVT only when the interaction with their antigen and PL occurs in the absence of calcium ions.  (+info)

Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. (3/178)

Platelet factor 4 (PF-4), a member of the CXC-subfamily of chemokines, is secreted in high amounts by activated platelets. In previous studies, we found that PF-4 specifically binds to human polymorphonuclear granulocytes (PMN), but requires tumor necrosis factor-alpha (TNF-alpha) as a costimulus for the induction of effector functions in suspended cells. In the present study, we have examined PF-4 in comparison with interleukin-8 (IL-8) for its ability to promote interaction of PMN with cultured endothelial cells (EC). We show here for the first time that PF-4 dose-dependently induces PMN to undergo extremely firm adhesion to EC as well as to exocytose secondary granule contents in the presence of these cells. Interestingly, costimulation by TNF-alpha was not required, indicating that EC could provide a corresponding signal(s). As evident from antibody blocking experiments, PF-4-induced adhesion involved PMN-expressed L-selectin as well as leukocyte function-associated molecule-1 (LFA-1), whereas IL-8 involved MAC-1. Because blocking antibodies to LFA-1 but not to L-selectin or MAC-1 abrogated PF-4-dependent marker exocytosis from PMN, the costimulatory signal provided by EC appears to be elicited through cell-cell contact via LFA-1. IL-8, inducing the upregulation of MAC-1, did not elicit marker exocytosis in contact with EC. Our results suggest a role for PF-4 in the promotion of PMN-EC interaction that is virtually different from that exhibited by other CXC-chemokines such as IL-8.  (+info)

Hydrophobic contact between the two epidermal growth factor-like domains of blood coagulation factor IX contributes to enzymatic activity. (4/178)

The three-dimensional structure of activated factor IX comprises multiple contacts between the two epidermal growth factor (EGF)-like domains. One of these is a salt bridge between Glu(78) and Arg(94), which is essential for binding of factor IXa to its cofactor factor VIII and for factor VIII-dependent factor X activation (Christophe, O. D., Lenting, P. J., Kolkman, J. A., Brownlee, G. G., and Mertens, K. (1998) J. Biol. Chem. 273, 222-227). We now addressed the putative hydrophobic contact at the interface between the EGF-like domains. Recombinant factor IX chimeras were constructed in which hydrophobic regions Phe(75)-Phe(77) and Lys(106)-Val(108) were replaced by the corresponding sites of factor X and factor VII. Activated factor IX/factor X chimeras were indistinguishable from normal factor IXa with respect to factor IXa enzymatic activity. In contrast, factor IXa(75-77)/factor VII displayed approximately 2-fold increased factor X activation in the presence of factor VIII, suggesting that residues 75-77 contribute to cofactor-dependent factor X activation. Activation of factor X by factor IX(106-108)/factor VII was strongly decreased, both in the absence and presence of factor VIII. Activity could be restored by simultaneous substitution of the hydrophobic sites in both EGF-like domains for factor VII residues. These data suggest that factor IXa enzymatic activity requires hydrophobic contact between the two EGF-like domains.  (+info)

Phosphatidylinositol 3,4,5-trisphosphate regulates Ca(2+) entry via btk in platelets and megakaryocytes without increasing phospholipase C activity. (5/178)

The role of phosphatidylinositol 3,4,5-trisphosphate (PI3,4,5P(3)) and Btk in signalling by the collagen receptor glycoprotein VI was investigated. PI3,4,5P(3) was increased in platelets from mice deficient in the SH2 domain-containing inositol 5-phosphatase (SHIP), in response to collagen related peptide (CRP). Tyrosine phosphorylation and activation of phospholipase Cgamma2 (PLCgamma2) were unaltered in SHIP(-/-) platelets, whereas Btk was heavily tyrosine phosphorylated under basal conditions and maximally phosphorylated by low concentrations of CRP. There was an increase in basal Ca(2+), maximal expression of P-selectin, and potentiation of Ca(2+) and aminophospholipid exposure to CRP in SHIP(-/-) platelets in the presence of Ca(2+) (1 mM). Microinjection of PI3,4, 5P(3) into megakaryocytes caused a 3-fold increase in Ca(2+) in response to CRP, which was absent in X-linked immunodeficiency (Xid) mice, which have a mutation in the PH domain of Btk. There was a corresponding partial reduction in the sustained level of intracellular Ca(2+) in response to CRP in Xid mice but no change in PLC activity. These results demonstrate a novel pathway of Ca(2+) entry that involves PI3,4,5P(3) and Btk, and which is independent of increased PLC activity.  (+info)

A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. (6/178)

Here we show that plasma kallikrein (PKal) mediates a plasminogen (Plg) cascade in adipocyte differentiation. Ecotin, an inhibitor of serine proteases, inhibits cell-shape change, adipocyte-specific gene expression, and lipid accumulation during adipogenesis in culture. Deficiency of Plg, but not of urokinase or tissue-type plasminogen activator, suppresses adipogenesis during differentiation of 3T3-L1 cells and mammary-gland involution. PKal, which is inhibited by ecotin, is required for adipose conversion, Plg activation and 3T3-L1 differentiation. Human plasma lacking PKal does not support differentiation of 3T3-L1 cells. PKal is therefore a physiological regulator that acts in the Plg cascade during adipogenesis. We propose that the Plg cascade fosters adipocyte differentiation by degradation of the fibronectin-rich preadipocyte stromal matrix.  (+info)

Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. (7/178)

Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  (+info)

Femoral artery thrombosis after percutaneous thrombin injection of an external iliac artery pseudoaneurysm. (8/178)

Ultrasound-guided percutaneous thrombin injection has been developed as a less invasive and highly successful treatment of iatrogenic femoral pseudoaneurysms. Most of these lesions have been the result of catheterization procedures. This method has proved to be highly effective, and few complications have been reported. Specifically, native arterial thrombosis, although recognized as a severe complication, has been mentioned only briefly in the literature. We present a case of the successful management of native arterial thrombosis after attempted percutaneous thrombin injection of a chronic external iliac artery pseudoaneurysm. This case serves to illustrate the risk factors for this complication and the treatment options once it occurs. The success of this treatment with acute iatrogenic femoral pseudoaneurysms may not necessarily translate into similar success in other anatomic locations and clinical situations.  (+info)