Overexpression of the multidrug resistance-associated protein (MRP1) in human heavy metal-selected tumor cells. (1/347)

Cellular and molecular mechanisms involved in the resistance to cytotoxic heavy metals remain largely to be characterized in mammalian cells. To this end, we have analyzed a metal-resistant variant of the human lung cancer GLC4 cell line that we have selected by a step-wise procedure in potassium antimony tartrate. Antimony-selected cells, termed GLC4/Sb30 cells, poorly accumulated antimony through an enhanced cellular efflux of metal, thus suggesting up-regulation of a membrane export system in these cells. Indeed, GLC4/Sb30 cells were found to display a functional overexpression of the multidrug resistance-associated protein MRP1, a drug export pump, as demonstrated by Western blotting, reverse transcriptase-polymerase chain reaction and calcein accumulation assays. Moreover, MK571, a potent inhibitor of MRP1 activity, was found to markedly down-modulate resistance of GLC4/Sb30 cells to antimony and to decrease cellular export of the metal. Taken together, our data support the conclusion that overexpression of functional MRP1 likely represents one major mechanism by which human cells can escape the cytotoxic effects of heavy metals.  (+info)

N-type voltage-dependent calcium channels mediate the nicotinic enhancement of GABA release in chick brain. (2/347)

The role of voltage-dependent calcium channels (VDCCs) in the nicotinic acetylcholine receptor (nAChR)-mediated enhancement of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) was investigated in chick brain slices. Whole cell recordings of neurons in the lateral spiriform (SpL) and ventral lateral geniculate (LGNv) nuclei showed that cadmium chloride (CdCl2) blocked the carbachol-induced increase of spontaneous GABAergic IPSCs, indicating that VDCCs might be involved. To conclusively show a role for VDCCs, the presynaptic effect of carbachol on SpL and LGNv neurons was examined in the presence of selective blockers of VDCC subtypes. omega-Conotoxin GVIA, a selective antagonist of N-type channels, significantly reduced the nAChR-mediated enhancement of gamma-aminobutyric acid (GABA) release in the SpL by 78% compared with control responses. Nifedipine, an L-type channel blocker, and omega-Agatoxin-TK, a P/Q-type channel blocker, did not inhibit the enhancement of GABAergic IPSCs. In the LGNv, omega-Conotoxin GVIA also significantly reduced the nAChR-mediated enhancement of GABA release by 71% from control values. Although omega-Agatoxin-TK did not block the nicotinic enhancement, L-type channel blockers showed complex effects on the nAChR-mediated enhancement. These results indicate that the nAChR-mediated enhancement of spontaneous GABAergic IPSCs requires activation of N-type channels in both the SpL and LGNv.  (+info)

Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. (3/347)

It is demonstrated that acetylcholine released from cholinergic interneurons modulates the excitability of neostriatal projection neurons. Physostigmine and neostigmine increase input resistance (RN) and enhance evoked discharge of spiny projection neurons in a manner similar to muscarine. Muscarinic RN increase occurs in the whole subthreshold voltage range (-100 to -45 mV), remains in the presence of TTX and Cd2+, and can be blocked by the relatively selective M1,4 muscarinic receptor antagonist pirenzepine but not by M2 or M3 selective antagonists. Cs+ occludes muscarinic effects at potentials more negative than -80 mV. A Na+ reduction in the bath occludes muscarinic effects at potentials more positive than -70 mV. Thus, muscarinic effects involve different ionic conductances: inward rectifying and cationic. The relatively selective M2 receptor antagonist AF-DX 116 does not block muscarinic effects on the projection neuron but, surprisingly, has the ability to mimic agonistic actions increasing RN and firing. Both effects are blocked by pirenzepine. HPLC measurements of acetylcholine demonstrate that AF-DX 116 but not pirenzepine greatly increases endogenous acetylcholine release in brain slices. Therefore, the effects of the M2 antagonist on the projection neurons were attributable to autoreceptor block on cholinergic interneurons. These experiments show distinct opposite functions of muscarinic M1- and M2-type receptors in neostriatal output, i.e., the firing of projection neurons. The results suggest that the use of more selective antimuscarinics may be more profitable for the treatment of motor deficits.  (+info)

Extracellular heavy-metal ions stimulate Ca2+ mobilization in hepatocytes. (4/347)

Populations of hepatocytes in primary culture were loaded with fura 2 and the effects of extracellular heavy-metal ions were examined under conditions that allowed changes in fura 2 fluorescence (R340/360, the ratio of fluorescence recorded at 340 and 360 nm) to be directly attributed to changes in cytosolic free [Ca2+] ([Ca2+]i). In Ca2+-free media, Ni2+ [EC50 (concentration causing 50% stimulation) approximately 24+/-9 microM] caused reversible increases in [Ca2+]i that resulted from mobilization of the same intracellular Ca2+ stores as were released by [Arg8]vasopressin. The effects of Ni2+ were not mimicked by increasing the extracellular [Mg2+], by addition of MnCl2, CoCl2 or CdCl2 or by decreasing the extracellular pH from 7.3 to 6.0; nor were they observed in cultures of smooth muscle, endothelial cells or pituitary cells. CuCl2 (80 microM), ZnCl2 (80 microM) and LaCl3 (5 mM) mimicked the ability of Ni2+ to evoke Ca2+ mobilization. The response to La3+ was sustained even in the absence of extracellular Ca2+, probably because La3+ also inhibited Ca2+ extrusion. Although Ni2+ entered hepatocytes, from the extent to which it quenched fura 2 fluorescence the free cytosolic [Ni2+] ([Ni2+]i) was estimated to be <5 nM at the peak of the maximal Ni2+-evoked Ca2+ signals and there was no correlation between [Ni2+]i and the amplitude of the evoked increases in [Ca2+]i. We conclude that extracellular Ni2+, Zn2+, Cu2+ and La3+, but not all heavy-metal ions, evoke an increase in [Ca2+]i in hepatocytes by stimulating release of the hormone-sensitive intracellular Ca2+ stores and that they may do so by interacting with a specific cell-surface ion receptor. This putative ion receptor may be important in allowing hepatocytes to contribute to regulation of plasma heavy-metal ions and may mediate responses to Zn2+ released into the portal circulation with insulin.  (+info)

Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae). (5/347)

Receptor potentials and electrical properties of nonspiking stretch-receptive neurons in the sand crab Emerita analoga (Anomura, Hippidae). Four nonspiking, monopolar neurons with central somata and large peripheral dendrites constitute the sole innervation of the telson-uropod elastic strand stretch receptor in Emerita analoga. We characterized their responses to stretch and current injection, using two-electrode current clamp, in intact cells and in two types of isolated peripheral dendritic segments, one that included and one that excluded the dendritic termini (mechanosensory membrane). The membrane potentials of intact cells at rest (mean +/- SD: -57 +/- 4. 4 mV, n = 30), recorded in peripheral or neuropil processes, are similar to the membrane potentials of isolated dendritic segments and always less negative than membrane potentials of motoneurons and interneurons recorded in the same preparations. Ion substitution experiments indicate that the membrane potential is influenced strongly by Na+ conductance, probably localized in the mechanotransducing terminals within the elastic strand. The form of the receptor potential in response to ramp-hold-release stretch remains the same as stretch amplitude is varied and is not dependent on initial membrane potential (-70 to -30 mV) or recording site: initial depolarization (slope follows ramp of applied stretch), terminated by rapid, partial repolarization to a plateau (delayed depolarization) that is intermediate between the peak depolarization and the initial potential and sustained for the duration of the stretch. Responses to depolarizing current pulses are similar to stretch-evoked receptor potentials, except for small amplitude stimuli: an initial peak occurs only in response to stretch and probably reflects elastic recoil of the extracellular matrix surrounding the dendritic terminals. The rapid, partial repolarization depends on holding potential and is abolished by 4-aminopyridine (4-AP; 10 mM), implicating a fast-activating, fast-inactivating K+ conductance; TEA (60 mM) abolishes the remaining slow repolarization to the plateau. In intact cells, but not dendritic segments, regenerative depolarizations can arise in response to stretch or depolarizing current pulses; they are reduced by CdCl2 (10 microM) in the saline containing TEA and 4-AP and probably reflect current spread from Ca2+ influx at presynaptic terminals in the ganglion. We found no evidence for other voltage-activated conductances. Unlike morphologically similar "nonspiking" thoracic receptors of other species, E. analoga's nonspiking neurons are electrically compact and do not boost the analogue afferent signal by voltage-activated inward currents. The most prominent (only?) voltage-activated extra-ganglionic conductances are for potassium; by reducing the slope of the stretch-plateau depolarization curve, they extend each neuron's functional range to the full range of sensitivity of the receptor.  (+info)

Urea-associated oxidative stress and Gadd153/CHOP induction. (6/347)

Urea treatment (100-300 mM) increased expression of the oxidative stress-responsive transcription factor, Gadd153/CHOP, at the mRNA and protein levels (at >/=4 h) in renal medullary mIMCD3 cells in culture, whereas other solutes did not. Expression of the related protein, CCAAT/enhancer-binding protein (C/EBP-beta), was not affected, nor was expression of the sensor of endoplasmic reticulum stress, grp78. Urea modestly increased Gadd153 transcription by reporter gene analysis but failed to influence Gadd153 mRNA stability. Importantly, upregulation of Gadd153 mRNA and protein expression by urea was antioxidant sensitive. Accordingly, urea treatment was associated with oxidative stress, as quantitated by intracellular reduced glutathione content in mIMCD3 cells. In addition, antioxidant treatment partially inhibited the ability of urea to activate transcription of an Egr-1 luciferase reporter gene. Therefore oxidative stress represents a novel solute-signaling pathway in the kidney medulla and, potentially, in other tissues.  (+info)

Effect of melatonin on cadmium-induced hepatotoxicity in male Sprague-Dawley rats. (7/347)

Effect of melatonin on toxicity of cadmium (Cd) was studied in male SD rats co-administered daily Cd (1 mg/kg b.w., s.c.) with melatonin (10 mg/kg b.w., i.p.) for 15 days. Cd alone injection decreased GSH concentrations in the liver and RBC by 35% and 43% compared with those in saline-treatment group, but not in the kidney and whole brain. The activity of GSSG-reductase was significantly decreased in the liver of Cd alone injected rats, while melatonin given in combination with Cd failed to prevent the Cd-induced decreased activity of hepatic GSSG-reductase. However, the hepatic GSH concentration decreased by Cd alone was restored by melatonin treatment, and the melatonin also ameliorated Cd-induced histopathological changes in the liver. Therefore, data indicate that melatonin restores the reduction of hepatic GSH level induced with Cd regardless of GSSG-reductase activity, and suggests that melatonin may ameliorate Cd-induced hepatotoxicity.  (+info)

The electrical properties of auditory hair cells in the frog amphibian papilla. (8/347)

The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.  (+info)