Splanchnic nitrogen metabolism by growing beef steers fed diets containing sorghum grain flaked at different densities. (49/1696)

The objective of this study was to determine effects of processing method, dry-rolled (DR) vs steam-flaked (SF), and degree of processing (flake density, FD) of SF sorghum grain on splanchnic (gut and liver) N metabolism by growing steers. Diets contained 77% sorghum grain either DR or SF at densities of 437, 360, and 283 g/L (SF34, SF28, and SF22, respectively). Eight crossbred steers (340 kg initial BW), implanted with indwelling catheters into portal, hepatic, and mesenteric veins and the mesenteric artery, were used in a randomized complete block design. Blood flows and net output or uptake of ammonia N, urea N (UN), and alpha-amino N (AAN) were measured across portal-drained viscera, hepatic, and splanchnic tissues. Plasma arterial, portal, and hepatic concentrations of individual amino acids were also measured. Decreasing FD linearly increased (P = .04) net absorption of AAN (51, 73, and 78 g/d for SF34, SF28, and SF22, respectively) and transfer (cycling) of blood UN to the gut (49, 48 and 64 g/d; P = .02). Net UN cycling averaged 38% of N intake across all diets. Hepatic uptake of AAN or UN synthesis, and splanchnic output of AAN and UN, were not altered by FD. Lowering FD linearly increased (P < or = .02) portal-arterial concentration differences for blood AAN and UN and plasma arterial concentrations for alanine. Steers fed SF compared to DR tended to have greater (P = .11) blood UN cycling (percentage of hepatic synthesis; 64 vs 50%) and decreased (P = .03) net splanchnic UN output (30 vs 50 g/d), but other net fluxes of N were not altered across splanchnic tissues. Steam-flaking compared to dry-rolling tended to decrease (P = .12) portal, but not hepatic, blood flow and increased (P < .01) hepatic-arterial concentration differences for blood UN. Except for a decrease (P = .01) in hepatic-arterial concentration differences of glutamine, plasma amino acid concentrations were not altered by feeding SF vs DR sorghum. Processing method (steam-flaking vs dry-rolling) or increasing the degree of processing (by decreasing FD) of SF sorghum grain resulted in greater transfer of blood UN to the gut. Reducing FD also linearly increased the absorption of AAN by growing steers, which explains (in part) published responses of superior performance by steers fed SF grains.  (+info)

Net absorption and hepatic metabolism of glucose, L-lactate, and volatile fatty acids by steers fed diets containing sorghum grain processed as dry-rolled or steam-flaked at different densities. (50/1696)

We determined the effect of processing method (dry-rolled [DR] vs steam-flaked [SF]) and degree of processing (flake density; FD) of SF sorghum grain on splanchnic (gut and liver) metabolism of energy-yielding nutrients by growing steers. Diets contained 77% sorghum grain, either DR or SF, with SF at densities of 437, 360, or 283 g/L (SF34, SF28, or SF22). Eight multicatheterized steers (340 kg initial BW) were used in a randomized complete block design. Net output or uptake of glucose, L-lactate, VFA, and beta-hydroxybutyrate (BHBA) were measured across portal-drained viscera (PDV), liver, and splanchnic (PDV plus liver) tissues. Net absorption of glucose across PDV was negative and similar for all treatments (average of -104 g/d). Decreasing FD of SF sorghum grain linearly increased (P < or = .04) net absorption and splanchnic output of L-lactate by 20 and 130%, respectively, and hepatic synthesis (P = .06) and splanchnic output (P = .01) of glucose by 50%. Reducing FD did not alter output or uptake of acetate or n-butyrate by gut and liver tissues, but linearly decreased (P = .06) splanchnic output of BHBA by 40%. Net absorption (P = .18) and splanchnic output (P = .15) of propionate tended to be increased linearly by 50% with decreasing FD. Neither processing method (SF vs DR) nor degree of processing (varying FD) altered hepatic nutrient extraction ratios or estimated net absorption and splanchnic output of energy. Maximal contribution of propionate, L-lactate, and amino acids (alpha-amino N) to gluconeogenesis averaged 49, 11, and 20%, respectively. Feeding steers SF compared to DR diets did not alter net output or uptake of energy-yielding nutrients across splanchnic tissues, except net absorption of acetate tended to be greater (P = .13) for steers fed DR. Increasing degree of grain processing in the present study, by incrementally decreasing FD, tended to linearly increase the net absorption of glucose precursors (propionate and lactate), resulting in linear increases in synthesis and output of glucose by the liver to extrasplanchnic tissues (e.g., muscle).  (+info)

Dietary strategies for lowering homocysteine concentrations. (51/1696)

BACKGROUND: Elevated plasma total homocysteine (tHcy) concentrations are associated with increased risk of vascular disease, and there is a strong inverse association between dietary and blood folate and blood tHcy concentrations. Increased folate consumption may lower the risk of tHcy-mediated cardiovascular disease. OBJECTIVES: The objective was to determine the most appropriate means of increasing dietary folate to reduce plasma tHcy. DESIGN: Sixty-five free-living subjects aged 36-71 y with tHcy concentrations >/=9 micromol/L participated in a randomized, controlled trial to compare 3 approaches for increasing dietary folate to approximately 600 microg/d: folic acid supplementation, consumption of folic acid-fortified breakfast cereals, and increased consumption of folate-rich foods. RESULTS: An intake of 437 microg folic acid/d from supplements resulted in a 27-nmol/L increase in serum folate and a 21% reduction in tHcy, relative to the change in a control group. In subjects who consumed folic acid-fortified breakfast cereal, folate intake increased by an average of 298 microg, serum folate increased by 21 nmol/L, and tHcy concentrations decreased by 24%. Increased intakes of folate-rich foods resulted in a 418-microg increase in dietary folate, a 7-nmol/L increase in serum folate, and a 9% reduction in tHcy concentrations. The decrease in tHcy was negatively correlated (r = -0.66) with the increase in serum folate. CONCLUSIONS: Daily consumption of folic acid-fortified breakfast cereals and the use of folic acid supplements appear to be the most effective means of reducing tHcy concentrations. The reduction in tHcy was significantly negatively correlated with the increase in serum folate, which may be a useful marker for measuring dietary change.  (+info)

A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. (52/1696)

BACKGROUND: Little is known about the effects of the amount and type of carbohydrates on risk of coronary heart disease (CHD). OBJECTIVE: The objective of this study was to prospectively evaluate the relations of the amount and type of carbohydrates with risk of CHD. DESIGN: A cohort of 75521 women aged 38-63 y with no previous diagnosis of diabetes mellitus, myocardial infarction, angina, stroke, or other cardiovascular diseases in 1984 was followed for 10 y. Each participant's dietary glycemic load was calculated as a function of glycemic index, carbohydrate content, and frequency of intake of individual foods reported on a validated food-frequency questionnaire at baseline. All dietary variables were updated in 1986 and 1990. RESULTS: During 10 y of follow-up (729472 person-years), 761 cases of CHD (208 fatal and 553 nonfatal) were documented. Dietary glycemic load was directly associated with risk of CHD after adjustment for age, smoking status, total energy intake, and other coronary disease risk factors. The relative risks from the lowest to highest quintiles of glycemic load were 1.00, 1.01, 1. 25, 1.51, and 1.98 (95% CI: 1.41, 2.77 for the highest quintile; P for trend < 0.0001). Carbohydrate classified by glycemic index, as opposed to its traditional classification as either simple or complex, was a better predictor of CHD risk. The association between dietary glycemic load and CHD risk was most evident among women with body weights above average inverted question markie, body mass index (in kg/m(2)) >/= 23. CONCLUSION: These epidemiologic data suggest that a high dietary glycemic load from refined carbohydrates increases the risk of CHD, independent of known coronary disease risk factors.  (+info)

Nutritional factors and worldwide incidence of childhood type 1 diabetes. (53/1696)

BACKGROUND: Some dietary factors have been associated with the risk of type 1 diabetes in childhood. OBJECTIVE: We investigated relations between dietary energy from major food groups and incidence of childhood type 1 diabetes by using an ecologic study design. DESIGN: We conducted univariate and multivariate regression analysis with incidence rates of type 1 diabetes in the late 1980s and early 1990s among children aged <15 y in 40 countries as the dependent variable and average per capita daily intake of major food items and other socioeconomic, demographic, and geographic risk factors as the independent variables. RESULTS: In the univariate regression model, per capita total energy intake was nonsignificantly associated with type 1 diabetes incidence (r = 0.31, NS), whereas energy from animal sources was associated (r = 0.61, P < 0.01) and energy from vegetal sources was inversely associated (r = -0.35, P < 0.05) with diabetes incidence. Among dietary items of animal origin, meat (r = 0.55, P < 0.001) and dairy products (r = 0. 80, P < 0.0001) were predictors of elevated incidence rates, whereas among dietary items of vegetal origin, cereals (r = -0.64, P < 0. 001) were inverse predictors. In the multivariate analysis, the inverse relation of diabetes incidence with energy from vegetables and the direct correlation with energy from animal sources explained the positive associations of type 1 diabetes incidence with geographic and socioeconomic covariates. CONCLUSION: The incidence of type 1 diabetes varied worldwide according to dietary patterns. In-depth exploration of dietary risk factors during pregnancy and early neonatal life is warranted to confirm whether and to what extent diet cooperates with genetic susceptibility in the early onset of type 1 diabetes.  (+info)

Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate. (54/1696)

BACKGROUND: Infant cereals are commonly fortified with insoluble iron compounds with low relative bioavailability, such as ferric pyrophosphate, because of organoleptic changes that occur after addition of water-soluble iron sources. OBJECTIVE: Our objective was to compare iron bioavailability from ferric pyrophosphate with an alternative iron source that is soluble in dilute acid, ferrous fumarate, and to evaluate the influence of ascorbic acid on iron bioavailability from ferrous fumarate in infants. DESIGN: Iron bioavailability was measured as the incorporation of stable iron isotopes into erythrocytes 14 d after administration of labeled test meals (25 g dry wheat and soy infant cereal, 100 g water, and 2.5 mg Fe as [57Fe]ferric pyrophosphate or [57Fe]ferrous fumarate). Ascorbic acid was added to all test meals (25 mg in study 1 or 25 or 50 mg in study 2). Infants were fed each test meal on 4 consecutive days under standardized conditions. The 2 different test meals within each study were administered 2 wk apart in a crossover design. RESULTS: Geometric mean iron bioavailability was significantly higher from [57Fe]ferrous fumarate than from [57Fe]ferric pyrophosphate [4.1% (range: 1.7-14.7%) compared with 1.3% (range: 0. 7-2.7%); n = 8, P = 0.008]. In this study, doubling the ascorbic acid content did not further enhance iron bioavailability; the geometric means (range) were 3.4% (1.9-6.6%) and 4.2% (1.2-18.7%) for the test meals with 25 and 50 mg ascorbic acid added, respectively (n = 9). CONCLUSION: Iron bioavailability from iron-fortified infant cereals can be improved by using an iron compound with high relative bioavailability and by ensuring adequate ascorbic acid content of the product.  (+info)

A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. (55/1696)

Sorghum is an important target for plant genomic mapping because of its adaptation to harsh environments, diverse germplasm collection, and value for comparing the genomes of grass species such as corn and rice. The construction of an integrated genetic and physical map of the sorghum genome (750 Mbp) is a primary goal of our sorghum genome project. To help accomplish this task, we have developed a new high-throughput PCR-based method for building BAC contigs and locating BAC clones on the sorghum genetic map. This task involved pooling 24,576 sorghum BAC clones ( approximately 4x genome equivalents) in six different matrices to create 184 pools of BAC DNA. DNA fragments from each pool were amplified using amplified fragment length polymorphism (AFLP) technology, resolved on a LI-COR dual-dye DNA sequencing system, and analyzed using Bionumerics software. On average, each set of AFLP primers amplified 28 single-copy DNA markers that were useful for identifying overlapping BAC clones. Data from 32 different AFLP primer combinations identified approximately 2400 BACs and ordered approximately 700 BAC contigs. Analysis of a sorghum RIL mapping population using the same primer pairs located approximately 200 of the BAC contigs on the sorghum genetic map. Restriction endonuclease fingerprinting of the entire collection of sorghum BAC clones was applied to test and extend the contigs constructed using this PCR-based methodology. Analysis of the fingerprint data allowed for the identification of 3366 contigs each containing an average of 5 BACs. BACs in approximately 65% of the contigs aligned by AFLP analysis had sufficient overlap to be confirmed by DNA fingerprint analysis. In addition, 30% of the overlapping BACs aligned by AFLP analysis provided information for merging contigs and singletons that could not be joined using fingerprint data alone. Thus, the combination of fingerprinting and AFLP-based contig assembly and mapping provides a reliable, high-throughput method for building an integrated genetic and physical map of the sorghum genome.  (+info)

Oxalate oxidases and differentiating surface structure in wheat: germins. (56/1696)

Oxalate oxidases (OXOs) have been found to be concentrated in the surface tissues of wheat embryos and grains: germin is concentrated in root and leaf sheaths that surround germinated embryos; pseudogermin (OXO-psi) is concentrated in the epidermis and bracts that 'encircle' mature grains. Most strikingly, the epidermal accumulation of OXO-psi was found to presage the transition of a delicate 'skin', similar to the fragile epidermis of human skin, into the tough shell (the miller's 'beeswing') that is typical of mature wheat grains. A narrow range of oxalate concentration (1--2 mM) in the hydrated tissues of major crop cereals (barley, maize, oat, rice, rye and wheat) contrasted with wide variations in their OXO expression, e.g. cold-tolerant and cold-sensitive varieties of maize have similar oxalate contents but the former was found to contain approx. 20-fold more germin than did the latter. Well-known OXOs in sorghum, a minor cereal, and beet, a dicotyledon, were found to have little antigenic relatedness to the germins, but the beet enzyme did share some of the unique stability properties that are peculiar to the germin-like OXOs that are found only in the major crop cereals. Their concentration in surface structures of domesticated wheat suggests a biochemical role for germin-like OXOs: programmed cell death in surface tissues might be a constitutive as well as an adaptive form of differentiation that helps to produce refractory barriers against tissue invasion by predators. Incidental to the principal investigation, and using an OXO assay (oxalate-dependent release of CO(2)) that did not rely on detecting H(2)O(2), which is often fully degraded in cell extracts, it was found that OXO activity in soluble extracts of wheat was manifested only in standard solution assays if the extract was pretreated in a variety of ways, which included preincubation with pepsin or highly substituted glucuronogalactoarabinoxylans (cell-wall polysaccharides).  (+info)