Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. (25/1696)

A total of 161 fungal isolates were obtained from the surface-sterilized roots of field-grown oat and wheat plants in order to investigate the nature of the root-colonizing fungi supported by these two cereals. Fungi were initially grouped according to their colony morphologies and then were further characterized by ribosomal DNA sequence analysis. The collection contained a wide range of ascomycetes and also some basidiomycete fungi. The fungi were subsequently assessed for their abilities to tolerate and degrade the antifungal oat root saponin, avenacin A-1. Nearly all the fungi obtained from oat roots were avenacin A-1 resistant, while both avenacin-sensitive and avenacin-resistant fungi were isolated from the roots of the non-saponin-producing cereal, wheat. The majority of the avenacin-resistant fungi were able to degrade avenacin A-1. These experiments suggest that avenacin A-1 is likely to influence the development of fungal communities within (and possibly also around) oat roots.  (+info)

Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study. (26/1696)

BACKGROUND: Although current dietary guidelines for Americans recommend increased intake of grain products to prevent coronary heart disease (CHD), epidemiologic data relating whole-grain intake to the risk of CHD are sparse. OBJECTIVE: Our objective was to evaluate whether high whole-grain intake reduces risk of CHD in women. DESIGN: In 1984, 75521 women aged 38-63 y with no previous history of cardiovascular disease or diabetes completed a detailed, semiquantitative food-frequency questionnaire (SFFQ) and were followed for 10 y, completing SFFQs in 1986 and 1990. We used pooled logistic regression with 2-y intervals to model the incidence of CHD in relation to the cumulative average diet from all 3 cycles of SFFQs. RESULTS: During 729472 person-years of follow-up, we documented 761 cases of CHD (208 of fatal CHD and 553 of nonfatal myocardial infarction). After adjustment for age and smoking, increased whole-grain intake was associated with decreased risk of CHD. For increasing quintiles of intake, the corresponding relative risks (RRs) were 1.0 (reference), 0.86, 0.82, 0.72, and 0.67 (95% CI comparing 2 extreme quintiles: 0.54, 0.84; P for trend < 0.001). After additional adjustment for body mass index, postmenopausal hormone use, alcohol intake, multivitamin use, vitamin E supplement use, aspirin use, physical activity, and types of fat intake, these RRs were 1.0, 0.92, 0.93, 0.83, and 0.75 (95% CI: 0.59, 0.95; P for trend = 0.01). The inverse relation between whole-grain intake and CHD risk was even stronger in the subgroup of never smokers (RR = 0. 49 for extreme quintiles; 95% CI: 0.30, 0.79; P for trend = 0.003). The lower risk associated with higher whole-grain intake was not fully explained by its contribution to intakes of dietary fiber, folate, vitamin B-6, and vitamin E. CONCLUSIONS: Increased intake of whole grains may protect against CHD.  (+info)

Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. (27/1696)

There is growing evidence that cereals and legumes play important roles in the prevention of chronic diseases. Early epidemiologic studies of these associations focused on intake of dietary fiber rather than intake of grains or legumes. Generally, these studies indicated an inverse association between dietary fiber intake and risk of coronary artery disease; this observation has been replicated in recent cohort studies. Studies that focused on grain or cereal intake are fewer in number; these tend to support an inverse association between intake of whole grains and coronary artery disease. Studies on the association of dietary fiber with colon and other cancers have generally shown inverse relations, but whether these relations are attributable to cereals, other fiber sources, or other factors is less clear. Although legumes have been shown to lower blood cholesterol concentrations, epidemiologic studies are few and inconclusive regarding the association of legumes with risk of coronary artery disease. It has been hypothesized that legumes, in particular soybeans, reduce the risk of some cancers, but epidemiologic studies are equivocal in this regard. Overall, there is substantial epidemiologic evidence that dietary fiber and whole grains are associated with decreased risk of coronary artery disease and some cancers, whereas the role of legumes in these diseases appears promising but as yet inconclusive.  (+info)

Plausible mechanisms for the protectiveness of whole grains. (28/1696)

Dietary guidelines recommend the consumption of whole grains to prevent chronic diseases. Epidemiologic studies support the theory that whole grains are protective against cancer, especially gastrointestinal cancers such as gastric and colon can-cer, and cardiovascular disease. Components in whole grains that may be protective include compounds that affect the gut environment, such as dietary fiber, resistant starch, and oligosaccharides. Whole grains are also rich in compounds that function as antioxidants, such as trace minerals and phenolic compounds, and phytoestrogens, with potential hormonal effects. Other potential mechanisms whereby whole grains may protect against disease include binding of carcinogens and modulation of the glycemic response. Clearly, the range of protective substances in whole grains is impressive and advice to consume additional whole grains is justified. Further study is needed regarding the mechanisms behind this protection so that the most potent protective components of whole grains will be maintained when developing whole grains into acceptable food products for the public.  (+info)

The existence of the K(+) channel in plant mitochondria. (29/1696)

In this study, evidence is given that a number of isolated coupled plant mitochondria (from durum wheat, bread wheat, spelt, rye, barley, potato, and spinach) can take up externally added K(+) ions. This was observed by following mitochondrial swelling in isotonic KCl solutions and was confirmed by a novel method in which the membrane potential decrease due to externally added K(+) is measured fluorimetrically by using safranine. A detailed investigation of K(+) uptake by durum wheat mitochondria shows hyperbolic dependence on the ion concentration and specificity. K(+) uptake electrogenicity and the non-competitive inhibition due to either ATP or NADH are also shown. In the whole, the experimental findings reported in this paper demonstrate the existence of the mitochondrial K(+)(ATP) channel in plants (PmitoK(ATP)). Interestingly, Mg(2+) and glyburide, which can inhibit mammalian K(+) channel, have no effect on PmitoK(ATP). In the presence of the superoxide anion producing system (xanthine plus xanthine oxidase), PmitoK(ATP) activation was found. Moreover, an inverse relationship was found between channel activity and mitochondrial superoxide anion formation, as measured via epinephrine photometric assay. These findings strongly suggest that mitochondrial K(+) uptake could be involved in plant defense mechanism against oxidative stress due to reactive oxygen species generation.  (+info)

Identification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation. (30/1696)

Translation in plants is highly cap dependent, and the only plant mRNAs known to naturally lack a cap structure (m(7)GpppN) are viral in origin. The genomic RNA of tobacco etch virus (TEV), a potyvirus that belongs to the picornavirus superfamily, is a polyadenylated mRNA that is naturally uncapped and yet is a highly competitive mRNA during translation. The 143-nucleotide 5' leader is responsible for conferring cap-independent translation even on reporter mRNAs. We have carried out a deletion analysis of the TEV 5' leader to identify the elements responsible for its regulatory function and have identified two centrally located cap-independent regulatory elements (CIREs) that promote cap-independent translation. The introduction of a stable stem-loop structure upstream of each element demonstrated that CIRE-1 is less 5' end dependent in function than CIRE-2. In a dicistronic mRNA, the presence of the TEV 5' leader sequence in the intercistronic region increased expression of the second cistron, suggesting that the viral sequence can function in a 5'-distal position. Interestingly, the introduction of a stable stem-loop upstream of the TEV leader sequence or upstream of either CIRE in dicistronic constructs markedly increased their regulatory function. These data suggest that the TEV 5' leader contains two elements that together promote internal initiation but that the function of one element, in particular, is facilitated by proximity to the 5' end.  (+info)

Steam-processed corn and sorghum grain flaked at different densities alter ruminal, small intestinal, and total tract digestibility of starch by steers. (31/1696)

Crossbred steers (n = 7; 400 kg BW), fitted with T-type cannulas in the duodenum and ileum, were used to examine the effects of processing method, dry-rolled (DR) vs. steam-flaked (SF) sorghum grain, and degree of processing (flake density; FD) of SF corn (SFC) and SF sorghum (SFS) grain on site and extent of DM, starch, and N digestibilities and to measure extent of microbial N flow to the duodenum. In Exp. 1, diets contained 77% DRS or 77% SFS with FD of 437, 360, and 283 g/L (SF34, SF28, and SF22). In Exp. 2, diets contained 77% SFC with FD of SF34 or SF22. For sorghum and corn diets, respective average daily intakes were as follows: DM, 6.7 and 8.1 kg; starch, 3.8 and 4.7 kg; N, 136 and 149 g. Steers fed SFS vs. DRS increased (P = .01) starch digestibilities (percentage of intake) in the rumen (82 vs. 67%) and total tract (98.9 vs. 96.5%) and decreased digestibilities in the small intestine (16 vs. 28%; P = .01) and large intestine (.5 vs 1.2%; P = .05). As a percentage of starch entering the segment, digestibility was increased (P = .01) within the small intestine (91 vs. 85%) but was not altered within the large intestine by steers fed SFS vs. DRS. Decreasing FD of SFS and of SFC, respectively, linearly increased starch digestibilities (percentage of intake) in the rumen (P = .03, .02) and total tract (P = .03, .09) and linearly diminished starch digestibilities in the small intestine (P = .04, .09). Starch digestibilities (percentage of entry) within the small or large intestine were not changed by FD. The percentage of dietary corn or sorghum starch digested in the large intestine was very small, less than 2% of intake. Microbial N flow to the duodenum was not altered by SFS compared to DRS, or by decreasing FD of SFS and SFC. Reducing FD of SFS, but not of SFC, tended to decrease (P = .07) microbial efficiency linearly and tended to increase (P = .06) total tract N digestibilities linearly. Steam flaking compared to dry rolling of sorghum grain and decreasing FD of SFC and SFS grain consistently increased starch digestibility in the rumen and total tract of growing steers. The greatest total digestibility of dietary starch occurred when the proportion digested in the rumen was maximized and the fraction digested in the small intestine was minimized. These changes in sites of digestion account, in part, for the improved N conservation and greater hepatic output of glucose by steers fed lower FD of SFS reported in our companion papers.  (+info)

Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. (32/1696)

A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization.  (+info)