MycN sensitizes neuroblastoma cells for drug-induced apoptosis. (1/2199)

Amplification of the MYCN gene is found in a large proportion of neuroblastoma and considered as an adverse prognostic factor. To investigate the effect of ectopic MycN expression on the susceptibility of neuroblastoma cells to cytotoxic drugs we used a human neuroblastoma cell line harboring tetracycline-controlled expression of MycN. Neither conditional expression of MycN alone nor low drug concentrations triggered apoptosis. However, when acting in concert, MycN and cytotoxic drugs efficiently induced cell death. Apoptosis depended on mitochondrial permeability transition and activation of caspases, since the mitochondrion-specific inhibitor bongkrekic acid and the caspase inhibitor zVAD-fmk almost completely abrogated apoptosis. Loss of mitochondrial transmembrane potential and release of cytochrome c from mitochondria preceded activation of caspase-8 and caspase-3 and cleavage of PARP. CD95 expression was upregulated by treatment with cytotoxic drugs, while MycN cooperated with cytotoxic drugs to increase sensitivity to CD95-induced apoptosis and enhancing CD95-L expression. MycN overexpression and cytotoxic drugs also synergized to induce p53 and Bax protein expression, while Bcl-2 and Bcl-X(L) protein levels remained unchanged. Since amplification of MYCN is usually associated with a poor prognosis, these findings suggest that dysfunctions in apoptosis pathways may be a mechanism by which MycN-induced apoptosis of neuroblastoma cells is inhibited.  (+info)

Tumor necrosis factor alpha regulation of the FAS-mediated apoptosis-signaling pathway in synovial cells. (2/2199)

OBJECTIVE: Fas-mediated apoptosis is observed in synoviocytes of patients with rheumatoid arthritis (RA), but not in those of patients with osteoarthritis (OA). The present study was conducted to elucidate the mechanisms that initiate induction of Fas-mediated apoptosis in RA synoviocytes. METHODS: Cultured OA synoviocytes, which are insensitive to Fas-mediated apoptosis in spite of Fas antigen expression, were used in these experiments. Synovial cell proliferation and cytotoxicity studies were performed using MTS and lactate dehydrogenase release assays. Surface expression of Fas antigen was analyzed by flow cytometry. The expression and function of apoptosis-signaling molecules, such as caspase 8 and caspase 3, were examined by immunoblot analysis. RESULTS: Tumor necrosis factor alpha (TNFalpha) induced proliferation of cultured OA synoviocytes. Fas ligation with anti-Fas monoclonal antibody (mAb) resulted in cytotoxic activity against cultured OA synoviocytes that had been pretreated with TNFalpha for 5 days, but not those pretreated for 2 days. In contrast, anti-Fas mAb did not show a cytotoxic effect against untreated cultured OA synoviocytes. A gradual up-regulation of caspase 8 and caspase 3, which played a role in the caspase cascade for Fas-mediated apoptosis, was observed in TNFalpha-treated cultured OA synoviocytes. In addition, Fas ligation to TNFalpha-treated cultured OA synoviocytes induced activation of caspase 8 and caspase 3, with subsequent cleavage of poly(ADP-ribose) polymerase (PARP), a substrate of activated caspase 3. More importantly, Z-IETD-FMK, a caspase 8 inhibitor, and Ac-DEVD-CHO, a caspase 3 inhibitor, almost completely inhibited Fas-mediated apoptosis of TNFalpha-treated cultured OA synoviocytes, whereas Ac-YVAD-CHO, a caspase 1 inhibitor, did not. CONCLUSION: Our results clearly demonstrate that TNFalpha stimulates synovial cells to proliferate as well as sensitizes the cells for Fas-mediated apoptosis, at least in part by up-regulation and activation of caspase 8 and caspase 3. These findings suggest that TNFalpha may be one of the factors providing sensitization of synovial cells to Fas-mediated apoptosis in RA.  (+info)

Solution structure of BID, an intracellular amplifier of apoptotic signaling. (3/2199)

We report the solution structure of BID, an intracellular cross-talk agent that can amplify FAS/TNF apoptotic signal through the mitochondria death pathway after Caspase 8 cleavage. BID contains eight alpha helices where two central hydrophobic helices are surrounded by six amphipathic ones. The fold resembles poreforming bacterial toxins and shows similarity to BCL-XL although sequence homology to BCL-XL is limited to the 16-residue BH3 domain. Furthermore, we modeled a complex of BCL-XL and BID by aligning the BID and BAK BH3 motifs in the known BCL-XL-BAK BH3 complex. Additionally, we show that the overall structure of BID is preserved after cleavage by Caspase 8. We propose that BID has both BH3 domain-dependent and -independent modes of action in inducing mitochondrial damage.  (+info)

Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. (4/2199)

Members of the BCL2 family of proteins are key regulators of programmed cell death, acting either as apoptotic agonists or antagonists. Here we describe the solution structure of BID, presenting the structure of a proapoptotic BCL2 family member. An analysis of sequence/structure of BCL2 family members allows us to define a structural superfamily, which has implications for general mechanisms for regulating proapoptotic activity. It appears two criteria must be met for proapoptotic function within the BCL2 family: targeting of molecules to intracellular membranes, and exposure of the BH3 death domain. BID's activity is regulated by a Caspase 8-mediated cleavage event, exposing the BH3 domain and significantly changing the surface charge and hydrophobicity, resulting in a change of cellular localization.  (+info)

Targeted disruption of caspase genes in mice: what they tell us about the functions of individual caspases in apoptosis. (5/2199)

Cysteine proteases of the caspase family are crucial mediators of apoptosis. All mammalian cells contain a large number of caspases. Although many caspases are activated in a cell committed to apoptosis, recent data from caspase gene knockout mice suggest that individual caspases may be involved in the cell and stimulus-specific pathways of cell death. The gene disruption studies also establish the functional hierarchy between two structurally distinct classes of caspases. The present review discusses these recent findings and elaborates on how these mutant mouse models have helped the understanding of the mechanisms that govern programmed cell death in the immune and other systems.  (+info)

Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. (6/2199)

To evaluate the role of ceramide (Cer) in apoptosis signaling, we examined Cer formation induced by CD95, etoposide, or gamma-radiation (IR) in relation to caspase activation and mitochondrial changes in Jurkat T cells. The Cer response to all three stimuli was mapped in between caspases sensitive to benzoyloxycarbonyl-VAD-fluoromethylketone (zVAD-fmk) and acetyl-DEVD-aldehyde (DEVD-CHO). Cer production was independent of nuclear fragmentation but associated with the occurrence of other aspects of the apoptotic morphology. Caspase-8 inhibition abrogated Cer formation and apoptosis induced by CD95 but did not affect the response to etoposide or IR, placing CD95-induced Cer formation downstream from caspase-8 and excluding a role for caspase-8 in the DNA damage pathways. CD95 signaling to the mitochondria required caspase-8, whereas cytochrome c release in response to DNA damage was caspase-independent. These results indicate that the caspases required for the Cer response to etoposide and IR reside at or downstream from the mitochondria. Bcl-2 overexpression abrogated the Cer response to etoposide and IR and reduced CD95-induced Cer accumulation. We conclude that the Cer response to DNA damage fully depends on mitochondrion-dependent caspases, whereas the response to CD95 partially relies on these caspases. Our data imply that Cer is not instrumental in the activation of inducer caspases or signaling to the mitochondria. Rather, Cer formation is associated with the execution phase of apoptosis.  (+info)

Caspase-8 is required for cell death induced by expanded polyglutamine repeats. (7/2199)

We show here that caspase-8 is required for the death of primary rat neurons induced by an expanded polyglutamine repeat (Q79). Expression of Q79 recruited and activated caspase-8. Inhibition of caspase-8 blocked polyglutamine-induced cell death. Coexpression of Q79 with the caspase inhibitor CrmA, a dominant-negative mutant of FADD (FADD DN), Bcl-2, or Bcl-xL, but not an N-terminally tagged Bcl-xL, prevented the recruitment of caspase-8 and inhibited polyglutamine-induced cell death. Furthermore, Western blot analysis revealed the presence of activated caspase-8 in the insoluble fraction of affected brain regions from Huntington's disease (HD) patients but not in those from neurologically unremarkable controls, suggesting the relocation and activation of caspase-8 during the pathogenesis of HD. These results suggest an essential role of caspase-8 in HD-related neural degenerative diseases.  (+info)

Cell death attenuation by 'Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. (8/2199)

Apoptotic cell suicide initiated by ligation of CD95 (Fas/APO-1) occurs through recruitment, oligomerization and autocatalytic activation of the cysteine protease, caspase-8 (MACH, FLICE, Mch5). An endogenous mammalian regulator of this process, named Usurpin, has been identified (aliases for Usurpin include CASH, Casper, CLARP, FLAME-1, FLIP, I-FLICE and MRIT). This protein is ubiquitously expressed and exists as at least three isoforms arising by alternative mRNA splicing. The Usurpin gene is comprised of 13 exons and is clustered within approximately 200 Kb with the caspase-8 and -10 genes on human chromosome 2q33-34. The Usurpin polypeptide has features in common with pro-caspase-8 and -10, including tandem 'death effector domains' on the N-terminus of a large subunit/small subunit caspase-like domain, but it lacks key residues that are necessary for caspase proteolytic activity, including the His and Cys which form the catalytic substrates diad, and residues that stabilize the P1 aspartic acid in substrates. Retro-mutation of these residues to functional caspase counterparts failed to restore proteolytic activity, indicating that other determinants also ensure the absence of catalytic potential. Usurpin heterodimerized with pro-caspase-8 in vitro and precluded pro-caspase-8 recruitment by the FADD/MORT1 adapter protein. Cell death induced by CD95 (Fas/APO-1) ligation was attenuated in cells transfected with Usurpin. In vivo, a Usurpin deficit was found in cardiac infarcts where TUNEL-positive myocytes and active caspase-3 expression were prominent following ischemia/reperfusion injury. In contrast, abundant Usurpin expression (and a caspase-3 deficit) occurred in surrounding unaffected cardiac tissue, suggesting reciprocal regulation of these pro- and anti-apoptotic molecules in vivo. Usurpin thus appears to be an endogenous modulator of apoptosis sensitivity in mammalian cells, including the susceptibility of cardiac myocytes to apoptotic death following ischemia/ reperfusion injury.  (+info)