Beta 1-, beta 2- and atypical beta-adrenoceptor-mediated relaxation in rat isolated aorta. (1/31)

beta-adrenoceptor-mediated relaxation was investigated in ring preparations of rat isolated thoracic aorta. Rings were pre-constricted with a sub-maximal concentration of noradrenaline (1 microM) and relaxant responses to cumulative concentrations of beta-adrenoceptor agonists obtained. The concentration-response curve (CRC) to isoprenaline was shifted to the right by propranolol (0.3 microM) with a steepening of the slope. Estimation of the magnitude of the shift from EC(50) values gave a pA(2) of 7.6. Selective beta(1)- and beta(2)-adrenoceptor antagonists, CGP 20712A (0.1 microM) and ICI 118551 (0.1 microM), respectively, produced 4 and 14 fold shifts of the isoprenaline CRC. Atypical beta-adrenoceptor agonists also produced concentration-dependent relaxation of aortic rings. The order of potency of the beta-adrenoceptor agonists was (-log EC(50)): isoprenaline (6. 25)>cyanopindolol (5.59)>isoprenaline+propranolol (5.11)>CGP 12177A (4.40)>ZD 2079 (4.24)>ZM 215001 (4.07)>BRL 37344 (3.89). Relaxation to CGP 12177A and ZM 215001 was unaffected by propranolol (0.3 microM). SR 59230A (+info)

The beta3-adrenoceptor-mediated relaxation induced by epinephrine in guinea pig taenia caecum. (2/31)

The mechanisms of the beta-adrenoceptor mediated relaxation induced by epinephrine in guinea pig taenia caecum were examined. The relaxant response to epinephrine was unaffected by propranolol (approximately 10(-5) M) or phentolamine (approximately 10(-5) M). The response to epinephrine was antagonized in a concentration dependent manner by bupranolol, and Schild plot of the data revealed the pA2 value of 5.87. Epinephrine significantly increased cyclic AMP level in this preparation. Bupranolol (10(-4) M) significantly decreased the cyclic AMP level that was elicited by epinephrine, whereas propranolol (10(-5) M) produced no effect. These results suggest that the relaxant response to epinephrine in the guinea pig taenai caecum is mainly mediated by beta3-adrenoceptors.  (+info)

Partial agonistic effects of carteolol on atypical beta-adrenoceptors in the guinea pig gastric fundus. (3/31)

The properties of the beta1-/beta2-adrenoceptor partial agonist carteolol were investigated in atypical beta-adrenoceptors on the guinea pig gastric fundus. Carteolol induced concentration-dependent relaxation in this tissue (pD2 = 5.55, intrinsic activity = 0.94). However, a combination of the selective beta1-adrenoceptor antagonist atenolol (100 microM) and the selective beta2-adrenoceptor antagonist butoxamine (100 microM) produced only small rightward shifts in the concentration-response curves of carteolol in the gastric fundus (pD2 = 4.91, intrinsic activity = 0.94). In the presence of both atenolol (100 microM) and butoxamine (100 microM), the non-selective beta1-, beta2- and beta3-adrenoceptor antagonist (+/-)-bupranolol (10-100 microM) caused a concentration-dependent right-ward shift of the concentration-response curves for carteolol in the guinea pig gastric fundus. Schild plot analyses of the effects of (+/-)-bupranolol against carteolol gave the pA2 value of 5.29 and the Schild slope was not significantly different from unity. Furthermore, carteolol (10 microM) weakly but significantly antagonized the relaxant responses to catecholamines ((-)-isoprenaline, (-)-noradrenaline and (-)-adrenaline), a selective beta3-adrenoceptor agonist BRL37344 ((R*,R*)-(+/-)-4-[2-[(2-(3-chlorophenyl)-2-hydroxyethyl)amino]propyl]phenoxy-acet ic acid sodium salt) and a non-conventional partial beta3-adrenoceptor agonist (+/-)-CGP12177A ([4-[3-[(1,1dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2- one] hydrochloride) in the guinea pig gastric fundus. These results suggest that the partial agonistic effects of carteolol are mediated by atypical beta-adrenoceptors in the guinea pig gastric fundus.  (+info)

(+/-)-Pindolol acts as a partial agonist at atypical beta-adrenoceptors in the guinea pig duodenum. (4/31)

The agonistic and antagonistic effects of (+/-)-pindolol (1-(1H-indol-4-yloxy)-3-[(1-methylethyl)amino]-2-propanol) were estimated to clarify whether (+/-)-pindolol acts as a partial agonist on atypical beta-adrenoceptors in the guinea pig duodenum. (+/-)-Pindolol induced concentration-dependent relaxation with a pD2 value of 5.10 +/- 0.03 and an intrinsic activity of 0.83 +/- 0.03. However, the relaxations to (+/-)-pindolol were not antagonized by the non-selective beta1- and beta2-adrenoceptor antagonist (+/-)-propranolol (1 microM). In the presence of (+/-)-propranolol (1 microM), the non-selective beta1-, beta2- and beta3-adrenoceptor antagonist (+/-)-bupranolol (30 microM) induced a rightward shift of the concentration-response curves for (+/-)-pindolol (apparent pA2 = 5.41 +/- 0.06). In the presence of (+/-)-propranolol, (+/-)-pindolol (10 microM) weakly but significantly antagonized the relaxant effects to catecholamines ((-)-isoprenaline, (-)-noradrenaline and (-)-adrenaline), a selective beta3-adrenoceptor agonist BRL37344 ((R*,R*)-(+/-)-4-[2-[(2-(3-chlorophenyl)-2-hydroxyethyl) amino]propyl]phenoxyacetic acid sodium salt) and a non-conventional partial beta3-adrenoceptor agonist (+/-)-CGP12177A([4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H -benzimidazol-2-one] hydrochloride). These results demonstrate that (+/-)-pindolol possesses both agonistic and antagonistic effects on atypical beta-adrenoceptors in the guinea pig duodenum.  (+info)

Further evidence that (+/-)-carteolol-induced relaxation is mediated by beta2-adrenoceptors but not by beta3-adrenoceptors in the guinea pig taenia caecum. (5/31)

The properties of the beta1- and beta2-adrenoceptor partial agonist (+/-)-carteolol were investigated against the beta2- and beta3-adrenoceptors of the taenia caecum of the guinea pig. (--)-Isoprenaline and (+/-)-carteolol induced concentration-dependent relaxation in this tissue. The non-selective beta1- and beta2-adrenoceptor antagonist (+/-)-propranolol (10-100 nM), the selective beta2-adrenoceptor antagonist ICI 118,551 (10-100 nM) and the non-selective beta1-, beta2- and beta3-adrenoceptor antagonist (+/-)-bupranolol (10-100nM), caused a concentration-dependent rightward shift of the concentration-response curves for (--)-isoprenaline and (+/-)-carteolol. Schild regression plot analyses carried out for (+/-)-propranolol against (--)-isoprenaline and (+/-)-carteolol gave pA2 values of 8.35 and 8.24, respectively. Schild plot analyses of ICI 118,551 against (--)-isoprenaline and (+/-)-carteolol gave pA2 values of 8.47 and 8.41, respectively. Schild plot analyses of (+/-)-bupranolol against (--)-isoprenaline and (+/-)-carteolol gave pA2 values of 8.47 and 8.53, respectively. Slopes of the Schild plots were not significantly different from unity. These results suggest that the relaxant effects of (+/-)-carteolol in the guinea pig taenia caecum are mediated by beta2-adrenoceptors but not by beta3-adrenoceptors.  (+info)

Transdermal absorption of bupranolol in rabbit skin in vitro and in vivo. (6/31)

This study was designed to clarify the percutaneous penetration of bupranolol (BP), a beta-adrenoceptor antagonist, through rabbit skin and to compare the in vitro penetration with the in vivo absorption. BP penetrated across the skin slowly in the absence of enhancers in vitro. Isopropyl myristate and N-methyl-2-pyrrolidone enhanced the in vitro penetration, with a 3.6 times higher flux compared with that without enhancers. However, in the in vivo percutaneous absorption, the maximal penetration was obtained with the formulation added dlimonene, with a 3.0 times higher area under the concentration-time curve (AUC) than that for the formulation without enhancers. The plasma levels of BP determined, however, were extremely lower than the theoretical plasma steady-state concentrations predicted. The plasma levels of BP after application of these formulations were maintained in the range of 7-22 ng/ml for 30 h, of which concentrations were above the therapeutically effective concentration (1.5-4 ng/ml). Therefore, the transdermal systems will offer an efficient drug delivery system for the treatment of angina pectoris and tachycardia.  (+info)

Structure-activity relationship studies of (+/-)-terbutaline and (+/-)-fenoterol on beta3-adrenoceptors in the guinea pig gastric fundus. (7/31)

(+/-)-Terbutaline and (+/-)-fenoterol are both arylethanolamine analogs that have tertbutyl and aryliso-propyl substituents respectively at the a position on the nitrogen of the ethanolamine side chain. In the present study, we have investigated the structure-activity relationships of (+/-)-terbutaline and (+/-)-fenoterol as beta3-adrenoceptor agonists in the guinea pig gastric fundus. (+/-)-Terbutaline and (+/-)-fenoterol induced concentration-dependent relaxation of the precontracted gastric fundus with pD2 values of 4.45+/-0.10 and 5.90+/-0.09, and intrinsic activities of 1.00+/-0.03 and 0.99+/-0.01 respectively. The combination of the selective beta1-adrenoceptor antagonist (+/-)-atenolol (100 microM), and the selective beta2-adrenoceptor antagonist (+/-)-butoxamine (100 microM), produced a 2 and 6 fold rightward shift of the concentration-response curves for (+/-)-terbutaline and (+/-)-fenoterol respectively, without depressing the maximal responses. The order of potency of these agonists was (pD2 value): (+/-)-fenoterol (5.09+/-0.10) > (+/-)-terbutaline (4.13+/-0.08). In the presence of (+/-)-atenolol and (+/-)-butoxamine, however, the non-selective beta1, beta2- and beta3-adrenoceptor antagonist (+/-)-bupranolol caused a concentration-dependent rightward shift of the concentration-response curves for (+/-)-terbutaline and (+/-)-fenoterol. Schild plot analyses of the effects of (+/-)-bupranolol against these agonists gave pA2 values of 6.21+/-0.07 ((+/-)-terbutaline) and 6.37+/-0.06 ((+/-)-fenoterol) respectively, and the slopes of the Schild plot were not significantly different from unity (p>0.05). These results suggest that the relaxant responses to (+/-)-terbutaline and (+/-)-fenoterol are mainly mediated through beta3-adrenoceptors in the guinea pig gastric fundus. The beta3-adrenoceptor agonist potencies of arylethanolamine analogs depend on the size of the end of the alkylamine side chain.  (+info)

Burst-like control of lipolysis by the sympathetic nervous system in vivo. (8/31)

Rapid oscillations of visceral lipolysis have been reported. To examine the putative role of the CNS in oscillatory lipolysis, we tested the effects of beta(3)-blockade on pulsatile release of FFAs. Arterial blood samples were drawn at 1-minute intervals for 120 minutes from fasted, conscious dogs (n = 7) during the infusion of saline or bupranolol (1.5 micro g/kg/min), a high-affinity beta(3)-blocker. FFA and glycerol time series were analyzed and deconvolution analysis was applied to estimate the rate of FFA release. During saline infusion FFAs and glycerol oscillated in phase at about eight pulses/hour. Deconvolution analysis showed bursts of lipolysis (nine pulses/hour) with time-dependent variation in burst frequency. Bupranolol completely removed rapid FFA and glycerol oscillations. Despite removal of lipolytic bursts, plasma FFAs (0.31 mM) and glycerol (0.06 mM) were not totally suppressed and deconvolution analysis revealed persistent non-oscillatory lipolysis (0.064 mM/min). These results show that lipolysis in the fasting state consists of an oscillatory component, which appears to be entirely dependent upon sympathetic innervation of the adipose tissue, and a non-oscillatory, constitutive component, which persists despite beta(3)-blockade. The extinction of lipid fuel bursts by beta(3)-blockade implies a role for the CNS in the maintenance of cyclic provision of lipid fuels.  (+info)