Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. (65/1068)

Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.  (+info)

Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. (66/1068)

Self-incompatibility (SI) enables flowering plants to discriminate between self- and non-self-pollen. In Brassica, SI is controlled by the highly polymorphic S locus. The recently identified male determinant, termed SP11 or SCR, is thought to be the ligand of S receptor kinase, the female determinant. To examine functional and evolutionary properties of SP11, we cloned 14 alleles from class-I S haplotypes of Brassica campestris and carried out sequence analyses. The sequences of mature SP11 proteins are highly divergent, except for the presence of conserved cysteines. The phylogenetic trees suggest possible co-evolution of the genes encoding the male and female determinants.  (+info)

Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus. (67/1068)

The uptake of radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) by protoplasts isolated from leaves of Brassica napus was detected using silicone oil filtration technique. The uptake was pH-dependent with higher uptake rates at acidic pH. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of p-OHBG, which was inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone, indicating that the uptake is dependent on a proton motive force. Dissipation of the internal positive membrane potential generated a small influx as compared with that seen for pH gradient (DeltapH). Kinetic studies demonstrated the presence of two uptake systems, a saturable and a linear component. The saturable kinetics indicated carrier-mediated translocation with a K(m) of 1.0 mm and a V(max) of 28.7 nmol/microl/h. The linear component had very low substrate affinity. The carrier-mediated transport had a temperature coefficient (Q(10)) of 1.8 +/- 0.2 in the temperature range from 4-30 degrees C. The uptake was against a concentration gradient and was sensitive to protonophores, uncouplers, H(+)-ATPase inhibitors, and the sulfhydryl group modifier p-chloromercuriphenylsulfonic acid. The carrier-mediated uptake system had high specificity for glucosinolates because glucosinolate degradation products, amino acids, sugars, or glutathione conjugates did not compete for p-OHBG uptake. Glucosinolates with different side chains were equally good competitors of p-OHBG uptake, which indicates that the uptake system has low specificity for the glucosinolate side chains. Our data provide the first evidence of an active transport of glucosinolates by a proton-coupled symporter in the plasma membrane of rape leaves.  (+info)

A novel protein kinase from Brassica juncea stimulated by a protozoan calcium binding protein. Purification and partial characterization. (68/1068)

A novel protein kinase (BjCCaBPk) from etiolated Brassica juncea seedlings has been purified and partially characterized. The purified enzyme migrated on SDS/PAGE as a single band with an apparent molecular mass of 43 kDa. The optimum pH for the kinase activity was 8.0. It was stimulated more than sixfold by the protozoa Entamoeba histolytica calcium binding protein EhCaBP (10.5 nM) but not by calmodulin (CaM) when used at equimolar concentration. Moreover the kinase also did not bind CaM-Sepharose. There was neither inhibition of the kinase activity in the presence of W-7 (a CaM antagonist), KN-62 (a specific calcium/CaM kinase inhibitor) and anti-CaM Ig, nor any effect on BjCCaBPk activity of staurosporine (a protein kinase C inhibitor). Furthermore a CaM-kinase specific substrate, syntide-2, proved to be a poor substrate for the BjCCaBPk compared with histone III-S. The phosphorylation of histone III-S involved serine residues. Southern and Northern blot analysis showed the presence of EhCaBP homologues in Brassica. The data suggest that BjCCaBPk may be a novel protein kinase with an affinity towards a calcium binding protein like EhCaBP.  (+info)

Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. (69/1068)

Bacteria isolates phenotypically related to Pseudomonas corrugata have frequently been isolated from the rhizosphere of Arabidopsis thaliana and Brassica napus grown on different soils. 16S rDNA (rrs) gene sequencing, DNA-DNA hybridization, biochemical characterization and siderophore typing showed that these isolates belong to two different species that are distinct from other species of the genus Pseudomonas, including P. corrugata. A description of properties of these two new species is given based on the study of 16 isolates. Proposed names are Pseudomonas brassicacearum (10 strains studied) and Pseudomonas thivervalensis (6 strains studied). The type strain of Pseudomonas brassicacearum is CFBP 11706T and that of Pseudomonas thivervalensis is CFBP 11261T.  (+info)

Synthesis and biological activities of 4-chloroindole-3-acetic acid and its esters. (70/1068)

4-Chloroindole-3-acetic acid (4-Cl-IAA) and its esters were synthesized from 2-chloro-6-nitrotoluene as the starting material. The biological activities of 4-CI-IAA and its esters were determined by four bioassays. Except for the tert-butyl ester, 4-Cl-IAA and its esters had stronger elongation activity toward Avena coleoptiles than had indole-3-acetic acid. The biological activities of the methyl, ethyl and allyl esters were as strong as the activity of the free acid. All the esters, except for the tert-butyl, inhibited Chinese cabbage hypocotyl growth more than the free acid did, and all the esters induced severe swelling and formation of numerous lateral roots in black gram seedlings even at a low concentration. Furthermore, adventitious root formation was strongly promoted in Serissa japonica cuttings by all the esters. The root formation-promoting activities of the ethyl and allyl esters were about three times the value for indole-3-butyric acid which is used to promote and accelerate root formation in plant cuttings.  (+info)

The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). (71/1068)

The tonB, exbB and exbD1 genes of Xanthomonas campestris pv. campestris are essential for ferric iron uptake. In contrast, the exbD2 gene located in the same gene cluster is not essential. Mutational analysis revealed that the ferric-iron-uptake genes tonB, exbB and exbD1 are necessary for the induction of a hypersensitive response (HR) on the nonhost plant pepper (Capsicum annuum) and the induction of typical black rot symptoms on the host plant cauliflower (Brassica oleracea). Again, the exbD2 gene behaved differently. It was found to play a role only in the induction of the HR in pepper but not in the induction of black rot symptoms in cauliflower. Due to the low iron concentration in the plant tissue, the titre of viable bacteria of the ferric-iron-uptake mutants tonB, exbB and exbD1 decreased after leaf infiltration of pepper. The exbD2 mutant, however, which is not impaired in ferric iron uptake, multiplied in the pepper leaf tissue and grew even better than the wild-type strain, probably due to its failure to induce the HR. Nevertheless, the tonB, exbB and exbD1 mutant strains were able to spread systemically in cauliflower.  (+info)

Novel flowering time variation in the resynthesized polyploid Brassica napus. (72/1068)

Recent molecular data using resynthesized polyploids of Brassica napus established that genome changes can occur rapidly after polyploid formation. In this study we present data that de novo phenotypic variation for flowering time also occurs rapidly after polyploidization. Two initial polyploid plants were developed by reciprocal crosses of B. rapa and B. oleracea followed by chromosome doubling to establish two lineages, each of which was expected to be homozygous and homogeneous. Several sublineages of each lineage were advanced by self-pollination. The range in days to flower of the sixth generation plants was 39-75 and 43-64 for the two lineages. Analysis of seventh generation progeny indicated that the variation was heritable. Lines were selected and self-pollinated to the eighth generation and also testcrossed to a natural B. napus cultivar; the testcross plants were then self-pollinated. Differences in flowering time were also inherited in these advanced generations. Days to flower was significantly correlated with leaf number in each generation. The rapid evolution of new phenotypic variation, like that observed in this model system, may have contributed to the success and diversification of natural polyploid organisms.  (+info)