Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. (1/1144)

The high-affinity cation-binding sites of bacteriorhodopsin (bR) were examined by solid-state 13C NMR of samples labeled with [3-13C]Ala and [1-13C]Val. We found that the 13C NMR spectra of two kinds of blue membranes, deionized (pH 4) and acid blue at pH 1.2, were very similar and different from that of the native purple membrane. This suggested that when the surface pH is lowered, either by removal of cations or by lowering the bulk pH, substantial change is induced in the secondary structure of the protein. Partial replacement of the bound cations with Na+, Ca2+, or Mn2+ produced additional spectral changes in the 13C NMR spectra. The following conclusions were made. First, there are high-affinity cation-binding sites in both the extracellular and the cytoplasmic regions, presumably near the surface, and one of the preferred cation-binding sites is located at the loop between the helix F and G (F-G loop) near Ala196, consistent with the 3D structure of bR from x-ray diffraction and cryoelectron microscopy. Second, the bound cations undergo rather rapid exchange (with a lifetime shorter than 3 ms) among various types of cation-binding sites. As expected from the location of one of the binding sites, cation binding induced conformational alteration of the F-G interhelical loop.  (+info)

Distortion of the L-->M transition in the photocycle of the bacteriorhodopsin mutant D96N: a time-resolved step-scan FTIR investigation. (2/1144)

The D96N mutant of bacteriorhodopsin has often been taken as a model system to study the M intermediate of the wild type photocycle due to the long life time of the corresponding intermediate of the mutant. Using time-resolved step-scan FTIR spectroscopy in combination with a sample changing wheel we investigated the photocycle of the mutant with microsecond time resolution. Already after several microseconds an intermediate similar to the MN state is observed, which contrasts with the M state of the wild type protein. At reduced hydration M and N intermediates similar to those of wild type BR can be detected. These results have a bearing on the interpretation of the photocycle of this mutant. A mechanism is suggested for the fast rise of MN which provides some insight into the molecular events involved in triggering the opening of the cytosolic channel also of the wild type protein.  (+info)

Molecular modeling of mu opioid receptor and receptor-ligand interaction. (3/1144)

AIM: To construct the 3D structural model of mu opioid receptor (mu OR) and study the interaction between mu OR and fentanyl derivatives. METHODS: The 3D structure of mu OR was modeled using the bacteriorhodopsin (bRh) as a template, in which the alignments of transmembrane (TM) of bRh and mu OR were achieved by scoring the alignment between the amino acid sequence of mu OR and the structure of bRh. The fentanyl derivatives were docked into the 7 helices of mu OR and the binding energies were calculated. RESULTS: (1) The receptor-ligand interaction models were obtained for fentanyl derivatives. (2) In these models, the fundamental binding sites were possibly Asp147 and His297. The negatively charged oxygen of Asp147 and the positively charged ammonium group of ligand formed the potent electrostatic and hydrogen-binding interactions. Whereas the interactions between the positively charged nitrogen of His297 and the carbonyl oxygen of ligand were weak. In addition, there were some pi-pi interactions between the receptor and the ligand. (3) The binding energies of the receptor-ligand complexes had a good correlation with the analgesic activities (-lg ED50) of the fentanyl derivatives. CONCLUSION: This model is helpful for understanding the receptor-ligand interaction and for designing novel mu OR selective ligands.  (+info)

Molecular modeling of interaction between delta opioid receptor and 3-methylfentanylisothiocyanate. (4/1144)

AIM: To construct a 3D structural model of delta opioid receptor (delta OR) and study its interaction with 3-methylfentanylisothiocyanate (SuperFIT). METHODS: Using the bacteriohodopsin as a template, the 3D structure of delta OR was modeled; SuperFIT was docked into its inside. RESULTS: The interaction model between delta OR and (3R, 4S)-SuperFIT was achieved, in which the important binding sites possibly were Asp128, Ser106, Phe104, Tyr308, and Pro315. Asp128 formed the electrostatic and hydrogen-binding interactions with the protonated nitrogen on piperidine of the ligand. Ser106 formed the electrostatic interaction with the N atom of isothiocyano group of the ligand; whereas Phe104, Tyr308, and Pro315 formed the hydrophobic interactions with the S atom of isothiocyano group. In addition, there were some other interactions between delta OR and the ligand. CONCLUSION: The residues Phe104, Tyr308, Pro315, and Ser106 of delta OR are crucial to the delta selectivity of the ligand, which is beneficial for designing novel delta-selective ligand.  (+info)

Interpretation of the spatial charge displacements in bacteriorhodopsin in terms of structural changes during the photocycle. (5/1144)

We have recently introduced a method, made possible by an improved orienting technique using a combination of electric and magnetic fields, that allows the three-dimensional detection of the intramolecular charge displacements during the photocycle of bacteriorhodopsin. This method generates electric asymmetry, a prerequisite for the detection of electric signal on the macroscopic sample, in all three spatial dimensions. Purple membrane fragments containing bacteriorhodopsin were oriented so that their permanent electric dipole moment vectors were perpendicular to the membrane plane and pointed in the same direction. The resulting cylindrical symmetry was broken by photoselection, i. e., by flash excitation with low intensity linearly polarized light. From the measured electric signals, the three-dimensional motion of the electric charge center in the bacteriorhodopsin molecules was calculated for the first 400 microseconds. Simultaneous absorption kinetic recording provided the time-dependent concentrations of the intermediates. Combining the two sets of data, we determined the discrete dipole moments of intermediates up to M. When compared with the results of current molecular dynamics calculations, the data provided a decisive experimental test for selecting the optimal theoretical model for the proton transport and should eventually lead to a full description of the mechanism of the bacteriorhodopsin proton pump.  (+info)

Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin. (6/1144)

In dark-adapted bacteriorhodopsin (bR) the retinal moiety populates two conformers: all-trans and (13,15)cis. Here we examine factors influencing the thermodynamic equilibrium and conformational transition between the two forms, using molecular mechanics and dynamics calculations. Adiabatic potential energy mapping indicates that whereas the twofold intrinsic torsional potentials of the C13==C14 and C15==N16 double bonds favor a sequential torsional pathway, the protein environment favors a concerted, bicycle-pedal mechanism. Which of these two pathways will actually occur in bR depends on the as yet unknown relative weight of the intrinsic and environmental effects. The free energy difference between the conformers was computed for wild-type and modified bR, using molecular dynamics simulation. In the wild-type protein the free energy of the (13,15)cis retinal form is calculated to be 1.1 kcal/mol lower than the all-trans retinal form, a value within approximately kBT of experiment. In contrast, in isolated retinal the free energy of the all-trans state is calculated to be 2.1 kcal/mol lower than (13,15)cis. The free energy differences are similar to the adiabatic potential energy differences in the various systems examined, consistent with an essentially enthalpic origin. The stabilization of the (13,15)cis form in bR relative to the isolated retinal molecule is found to originate from improved protein-protein interactions. Removing internal water molecules near the Schiff base strongly stabilizes the (13,15)cis form, whereas a double mutation that removes negative charges in the retinal pocket (Asp85 to Ala; Asp212 to Ala) has the opposite effect.  (+info)

Chloride ion binding to bacteriorhodopsin at low pH: an infrared spectroscopic study. (7/1144)

Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  (+info)

Time-resolved absorption and photothermal measurements with sensory rhodopsin I from Halobacterium salinarum. (8/1144)

An expansion accompanying the formation of the first intermediate in the photocycle of transducer-free sensory rhodopsin I (SRI) was determined by means of time-resolved laser-induced optoacoustic spectroscopy. For the native protein (SRI-WT), the absolute value of the expansion is approximately 5.5 mL and for the mutant SRI-D76N, approximately 1.5 mL per mol of phototransformed species (in 0.5 M NaCl), calculated by using the formation quantum yield for the first intermediate (S610) of Phi610 = 0.4 +/- 0.05 for SRI-WT and 0.5 +/- 0.05 for SRI-D76N, measured by laser-induced optoacoustic spectroscopy and by laser flash photolysis. The similarity in Phi610 and in the determined value of the energy level of S610, E610 = (142 +/- 12) kJ/mol for SRI-WT and SRI-D76N indicates that Asp76 is not directly involved in the first step of the phototransformation. The increase with pH of the magnitude of the structural volume change for the formation of S610 in SRI-WT and in SRI-D76N upon excitation with 580 nm indicates also that amino acids other than Asp76, and other than those related to the Schiff base, are involved in the process. The difference in structural volume changes as well as differences in the activation parameters for the S610 decay should be attributed to differences in the rigidity of the cavity surrounding the chromophore. Except for the decay of the first intermediate, which is faster than in the SRI-transducer complex, the rate constants of the photocycle for transducer-free SRI in detergent suspension are strongly retarded with respect to wild-type membranes (this comparison should be done with great care because the preparation of both samples is very different).  (+info)