Maternal exposure to atrazine during lactation suppresses suckling-induced prolactin release and results in prostatitis in the adult offspring. (1/193)

The availability of prolactin (PRL) to the neonatal brain is known to affect the development of the tuberoinfundibular (TIDA) neurons and, as a consequence, lead to alterations in subsequent PRL regulation. Without early lactational exposure to PRL (derived from the dam's milk), TIDA neuronal growth is impaired and elevated PRL levels are present in the prepubertal male. These observations, combined with the finding that alterations in PRL secretion (i.e., hyperprolactinemia) in the adult male rat have been implicated in the development of prostatitis, led us to hypothesize that early lactational exposure to agents that suppress suckling-induced PRL release would lead to a disruption in TIDA development, altered PRL regulation, and subsequent prostatitis in the male offspring. To test this hypothesis, suckling-induced PRL release was measured in Wistar dams treated twice daily with the herbicide atrazine (ATR, by gavage, on PND 1-4 at 0, 6.25, 12.5, 25, and 50 mg/kg body weight), or twice daily with the dopamine receptor agonist bromocriptine (BROM, sc, at 0.052, 0.104, 0.208, and 0.417 mg/kg); BROM is known to suppress PRL release. Similarly, atrazine has also been reported to suppress PRL in adult females. Serum PRL was measured on PND 3 using a serial sampling technique and indwelling cardiac catheters. A significant rise in serum PRL release was noted in all control females within 10 min of the initiation of suckling. Fifty-mg/kg ATR inhibited suckling-induced PRL release in all females, whereas 25 and 12.5 mg/kg ATR inhibited this measure in some dams and had no discernible effect in others. The 6.25 mg/kg dose of ATR was without effect. BROM, used here as a positive control, also inhibited suckling-induced PRL release at doses of 0.104 to 0.417 mg/kg, with no effect at 0.052 mg/kg. To examine the effect of postnatal ATR and BROM on the incidence and severity of inflammation (INF) of the lateral prostate of the offspring, adult males were examined at 90 and 120 days. While no effect was noted at 90 days of age, at 120 days, both the incidence and severity of prostate inflammation was increased in those offspring of ATR-treated dams (25 and 50 mg/kg). The 12.5 mg/kg ATR and the two highest doses of BROM increased the incidence, but not the severity, of prostatitis. Combined treatment of ovine prolactin (oPRL) and 25 or 50 mg/kg ATR on PND 1-4 reduced the incidence of inflammation observed at 120 days, indicating that this increase in INF, seen after ATR alone, resulted from the suppression of PRL in the dam. To determine whether or not there is a critical period for these effects, dams were dosed with 25 and 50 mg/kg on PND 6-9 and PND 11-14. Inflammation was increased in those offspring from dams treated on PND 6-9, but this increase was not significant. Dosing on PND 11-14 was without effect. These data demonstrate that ATR suppresses suckling-induced PRL release and that this suppression results in lateral prostate inflammation in the offspring. The critical period for this effect is PND 1-9.  (+info)

Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987-1991. (2/193)

BACKGROUND: Nitrate and atrazine are two chemicals that are heavily used in certain sectors of agriculture. They are suspected to be associated with the development of certain types of tumours. METHODS: Existing data were obtained on the incidence of specific types of cancers, contamination of drinking water with atrazine and nitrate, and related agricultural practices for the 40 ecodistricts in the province of Ontario. The data were merged into a georelational database for geographical and statistical analyses. Weighted (by population size) least squares regression analyses were conducted while controlling for confounding socioeconomic and lifestyle factors. Maximum likelihood spatial error models were estimated when least square regression error terms were found to be spatially autocorrelated using the Moran's I statistic. RESULTS: Atrazine contamination levels (range 50-649 ng/l, maximum acceptable concentration [MAC] = 60000 ng/l) were positively associated (P < 0.05) with stomach cancer incidence and negatively associated with colon cancer incidence. Nitrate levels, (range 0-91 mg/l, MAC = 10 mg/l) were negatively associated with stomach cancer incidence. CONCLUSION: The associations found at the ecodistrict level, both positive and negative, if confirmed by other studies, raise serious questions about maximum allowable limits for atrazine, as well as possibilities of complex trade-offs among disease outcomes, and interactions of biophysical and social mechanisms which might explain them. Although the negative associations appear to have no direct biological explanations, such counter-intuitive outcomes may occur in complex systems where social and biological variables interact.  (+info)

Atrazine disrupts the hypothalamic control of pituitary-ovarian function. (3/193)

The chloro-S-triazine herbicides (i.e., atrazine, simazine, cyanazine) constitute the largest group of herbicides sold in the United States. Despite their extensive usage, relatively little is known about the possible human-health effects and mechanism(s) of action of these compounds. Previous studies in our laboratory have shown that the chlorotriazines disrupt the hormonal control of ovarian cycles. Results from these studies led us to hypothesize that these herbicides disrupt endocrine function primarily through their action on the central nervous system. To evaluate this hypothesis, we examined the estrogen-induced surges of luteinizing hormone (LH) and prolactin in ovariectomized Sprague-Dawley (SD) and Long-Evans hooded (LE) rats treated with atrazine (50-300 mg/kg/day, by gavage) for 1, 3, or 21 days. One dose of atrazine (300 mg/kg) suppressed the LH and prolactin surge in ovariectomized LE, but not SD female rats. Atrazine (300 mg/kg) administered to intact LE females on the day of vaginal proestrus was without effect on ovulation but did induce a pseudopregnancy in 7 of 9 females. Three daily doses of atrazine suppressed the estrogen-induced LH and prolactin surges in ovariectomized LE females in a dose-dependent manner, but this same treatment was without effect on serum LH and prolactin in SD females. The estrogen-induced surges of both pituitary hormones were suppressed by atrazine (75-300 mg/kg/day) in a dose-dependent manner in females of both strains evaluated after 21 days of treatment. Three experiments were then performed to determine whether the brain, pituitary, or both organs were the target sites for the chlorotriazines. These included examination of the ability of (1) the pituitary lactotrophs to secrete prolactin, using hypophyosectomized females bearing pituitary autotransplants (ectopic pituitaries); (2) the synthetic gonadotropin-releasing hormone (GnRH) to induce LH secretion in females treated with high concentrations of atrazine for 3 days; and (3) atrazine (administered in vivo or in vitro) to suppress LH and prolactin secretion from pituitaries, using a flow-through perifusion procedure. In conclusion, the results of these studies demonstrate that atrazine alters LH and prolactin serum levels in the LE and SD female rats by altering the hypothalamic control of these hormones. In this regard, the LE female appeared to be more sensitive to the hormone suppressive effects of atrazine, as indicated by the decreases observed on treatment-day 3. These experiments support the hypothesis that the effect of atrazine on LH and prolactin secretion is mediated via a hypothalamic site of action.  (+info)

Isotope-labeled immunoassays without radiation waste. (4/193)

The practice of immunoassay has experienced a widespread transition from radioisotopic labeling to nonisotopic labeling over the last two decades. Radioisotope labels have drawbacks that hamper their applications: (i) perceived radiation hazards of reagents, (ii) regulatory requirements and disposal problems of working with radioactive materials, and (iii) short shelf-life of the labeled reagents. The advantage of isotopic labeling is the incorporation into analytes without altering structure or reactivity, as is often the case with ELISA or fluorescent detection systems. We developed a format for isotope label immunoassay with the long-life isotope (14)C as the label and accelerator mass spectrometer (AMS) as the detection system. AMS quantifies attomole levels of several isotopes, including (14)C. With this exquisite sensitivity, the sensitivity of an immunoassay is limited by the K(d) of the antibody and not the detection system. The detection limit of the assays for atrazine and 2,3,7,8-tetrachlorodibenzo-p-dioxin was 2.0 x 10(-10) M and 2.0 x 10(-11) M, respectively, approximately an order of magnitude below the standard enzyme immunoassay. Notably, <1 dpm (0.45 pCi) of (14)C-labeled compound was used in each assay, which is well below the limit of disposal (50 nCi per g) as nonradioactive waste. Thus, endogenous reporter ligands quantified by AMS provide the advantages of an RIA without the associated problems of radioactive waste.  (+info)

Determination of selected herbicides and phenols in water and soils by solid-phase extraction and high-performance liquid chromatography. (5/193)

A high-performance liquid chromatography procedure or the determination of the herbicides simazine, propazine, bromacil, metoxuron, and hexazinone is elaborated. Stationary phases RP8 and RP18 and mixtures of methanol-water (2:1 and 1:1, v/v) as a mobile phase are applied for this purpose. The conditions for solid-phase extraction are established, allowing the separation of phenols and herbicides in their mixtures and the extraction of phenols (from river and coke plant water) and herbicides (from the soil samples).  (+info)

Analysis of the diversity of a sheep antibody repertoire as revealed from a bacteriophage display library. (6/193)

We have applied bacteriophage display technology to construct and analyze the diversity of an IgG library of >1 x 108 clones from an adult sheep immunized against the hapten atrazine. We have identified eight new VH gene families (VH2-VH9) and five new Vkappa gene families (VkappaV-VkappaIX). The heavy and kappa light chain variable region gene loci were found to be far more diverse than previously thought.  (+info)

Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. (7/193)

Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Fourteen bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from soils obtained from two farms in Canada and two farms in France. These strains were indistinguishable from each other based on repetitive extragenic palindromic PCR genomic fingerprinting performed with primers ERIC1R, ERIC2, and BOXA1R. Based on 16S rRNA sequence analysis of one representative isolate, strain C147, the isolates belong to the genus Pseudaminobacter in the family Rhizobiaceae. Strain C147 did not form nodules on the legumes alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), red clover (Trifolium pratense L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.). A number of chloro-substituted s-triazine herbicides were degraded, but methylthio-substituted s-triazine herbicides were not degraded. Based on metabolite identification data, the fact that oxygen was not required, and hybridization of genomic DNA to the atzABC genes, atrazine degradation occurred via a series of hydrolytic reactions initiated by dechlorination and followed by dealkylation. Most strains could mineralize [ring-U-(14)C]atrazine, and those that could not mineralize atrazine lacked atzB or atzBC. The atzABC genes, which were plasmid borne in every atrazine-degrading isolate examined, were unstable and were not always clustered together on the same plasmid. Loss of atzB was accompanied by loss of a copy of IS1071. Our results indicate that an atrazine-degrading Pseudaminobacter sp. with remarkably little diversity is widely distributed in agricultural soils and that genes of the atrazine degradation pathway carried by independent isolates of this organism are not clustered, can be independently lost, and may be associated with a catabolic transposon. We propose that the widespread distribution of the atrazine-degrading Pseudaminobacter sp. in agricultural soils exposed to atrazine is due to the characteristic ability of this organism to utilize alkylamines, and therefore atrazine, as sole sources of carbon when the atzABC genes are acquired.  (+info)

Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro. (8/193)

Epidemiological, wildlife, and laboratory studies have pointed to the possible adverse health effects of chlorotriazine herbicide (i.e. , atrazine, simazine, and cyanazine) exposure. However, the cellular mechanism(s) of action of these compounds remains unknown. Recently, it was reported by Cooper et al. (2000, Toxicol. Sci. 53, 297-307) that atrazine disrupts ovarian function by altering hypothalamic catecholamine concentrations and subsequently the regulation of luteinizing hormone (LH) and prolactin (PRL) secretion by the pituitary. In this study, we examined the effect of three chlorotriazines on catecholamine metabolism in vitro using PC12 cells. Intracellular norepinephrine (NE) and dopamine (DA) concentrations and spontaneous NE release were measured following treatment with different concentrations of atrazine, simazine (0, 12. 5, 25, 50, 100, and 200 microM) and cyanazine (0, 25, 50, 100, and 400 microM) for 6, 12, 18, 24, and 48 h. Atrazine and simazine significantly decreased intracellular DA concentration in a concentration-dependent manner. Intracellular NE concentration was also significantly decreased by 100 and 200 microM atrazine and 200 microM simazine. Similarly, there was a dose-dependent inhibition of NE release with 100 and 200 microM concentrations of both compounds. Although 100 and 400 microM cyanazine increased intracellular NE concentration, 50, 100, and 400 microM cyanazine significantly increased NE release at 24 and 36 h. In contrast, intracellular DA concentration was decreased by cyanazine, but only at 400 microM. The GABA(A)-receptor agonist, muscimol (0, 0.01, 0.1, and 1.0 microM) had no effect on either the release or on intracellular catecholamine concentrations from 6 through 24 h of treatment. Cell viability was somewhat lower in the groups exposed to 100 and 200 microM atrazine and simazine. However, the reduction in viability was significant only in the highest dose of atrazine used (200 microM) at 24 h. Cyanazine did not have an effect on the viability at any of the doses tested, and the cells were functional, even up to 48 h of exposure. These data indicate that both atrazine and simazine inhibit the cellular synthesis of DA mediated by the tyrosine hydroxylase (TH), and NE mediated by dopamine beta-hydroxylase (DbetaH), and, as a result, there is a partial or significant inhibition of NE release. Cyanazine, on the other hand, stimulated the synthesis of intracellular NE, and not DA. Thus, chlorotriazine compounds presumably act at the enzymatic steps or sites of CA biosynthesis to modulate monoaminergic activity in PC12 cells.  (+info)