Isolation and characterization of mutations in Bacillus subtilis that allow spore germination in the novel germinant D-alanine. (33/1939)

Bacillus subtilis spores break their metabolic dormancy through a process called germination. Spore germination is triggered by specific molecules called germinants, which are thought to act by binding to and stimulating spore receptors. Three homologous operons, gerA, gerB, and gerK, were previously proposed to encode germinant receptors because inactivating mutations in those genes confer a germinant-specific defect in germination. To more definitely identify genes that encode germinant receptors, we isolated mutants whose spores germinated in the novel germinant D-alanine, because such mutants would likely contain gain-of-function mutations in genes that encoded preexisting germinant receptors. Three independent mutants were isolated, and in each case the mutant phenotype was shown to result from a single dominant mutation in the gerB operon. Two of the mutations altered the gerBA gene, whereas the third affected the gerBB gene. These results suggest that gerBA and gerBB encode components of the germinant receptor. Furthermore, genetic interactions between the wild-type gerB and the mutant gerBA and gerBB alleles suggested that the germinant receptor might be a complex containing GerBA, GerBB, and probably other proteins. Thus, we propose that the gerB operon encodes at least two components of a multicomponent germinant receptor.  (+info)

Familial overexpression of beta antithrombin caused by an Asn135Thr substitution. (34/1939)

We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (approximately 70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of beta antithrombin (the very high affinity fraction) greatly increased (approximately 20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of beta antithrombin in regulating coagulation.  (+info)

Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. (35/1939)

We used two strains of tomato leaf curl virus from New Delhi to investigate specificity in replication of their cognate genomes. The strains share 94% sequence identity and are referred to as severe and mild on the basis of symptoms on tomato and tobacco. Replication assays in tobacco protoplasts and plants showed that a single amino acid change, Asn10 to Asp in the N terminus of Rep protein, determines specificity for replication of the two strains based upon its interaction with the origin of replication (ori) sequences. The change of Asp10 to Asn in Rep protein of the mild strain coupled with point mutations at the 3rd and 10th nucleotides of the 13-mer binding site altered its replication ability, resulting in increased levels of virus accumulation. Similarly, changing Asn10 to Asp in Rep protein of the severe strain impaired replication of the virus and altered its severe phenotype in plants. Site-directed mutations made in ori and Asn10 of Rep protein suggested that Asn10 recognizes the third base pair of the putative binding site sequence GGTGTCGGAGTC in the severe strain.  (+info)

Aspartic acid for asparagine substitution at position 276 reduces susceptibility to mechanism-based inhibitors in SHV-1 and SHV-5 beta-lactamases. (36/1939)

In SHV-type beta-actamases, position 276 (in Ambler's numbering scheme) is occupied by an asparagine (Asn) residue. The effect on SHV-1 beta-lactamase and its extended-spectrum derivative SHV-5 of substituting an aspartic acid (Asp) residue for Asn276 was studied. Mutations were introduced by a PCR-based site-directed mutagenesis procedure. Wild-type SHV-1 and -5 beta-lactamases and their respective Asn276-->Asp mutants were expressed under isogenic conditions by cloning the respective bla genes into the pBCSK(+) plasmid and transforming Escherichia coli DH5alpha. Determination of IC50 showed that SHV-1(Asn276-->Asp), compared with SHV-1, was inhibited by 8- and 8.8-fold higher concentrations of clavulanate and tazobactam respectively. Replacement of Asn276 by Asp in SHV-5 beta-lactamase caused a ten-fold increase in the IC50 of clavulanate; the increases in the IC50s of tazobactam and sulbactam were 10- and 5.5-fold, respectively. Beta-lactam susceptibility testing showed that both Asn276-->Asp mutant enzymes, compared with the parental beta-lactamases, conferred slightly lower levels of resistance to penicillins (amoxycillin, ticarcillin and piperacillin), cephalosporins (cephalothin and cefprozil) and some of the expanded-spectrum oxyimino beta-lactams tested (cefotaxime, ceftriaxone and aztreonam). The MICs of ceftazidime remained unaltered, while those of cefepime and cefpirome were slightly elevated in the clones producing the mutant beta-lactamases. The latter clones were also less susceptible to penicillin-inhibitor combinations. Asn276-->Asp mutation was associated with changes in the substrate profiles of SHV-1 and SHV-5 enzymes. Based on the structure of TEM-1 beta-lactamase, the potential effects of the introduced mutation on SHV-1 and SHV-5 are discussed.  (+info)

Lys13 plays a crucial role in the functional adaptation of the thermophilic triose-phosphate isomerase from Bacillus stearothermophilus to high temperatures. (37/1939)

The thermophilic triose-phosphate isomerases (TIMs) of Bacillus stearothermophilus (bTIM) and Thermotoga maritima (tTIM) have been found to possess a His12-Lys13 pair instead of the Asn12-Gly13 pair normally present in mesophilic TIMs. His12 in bTIM was proposed to prevent deamidation at high temperature, while the precise role of Lys13 is unknown. To investigate the role of the His12 and Lys13 pair in the enzyme's thermoadaptation, we reintroduced the "mesophilic residues" Asn and Gly into both thermophilic TIMs. Neither double mutant displayed diminished structural stability, but the bTIM double mutant showed drastically reduced catalytic activity. No similar behavior was observed with the tTIM double mutant, suggesting that the presence of the His12 and Lys13 cannot be systematically correlated to thermoadaptation in TIMs. We determined the crystal structure of the bTIM double mutant complexed with 2-phosphoglycolate to 2.4-A resolution. A molecular dynamics simulation showed that upon substitution of Lys13 to Gly an increase of the flexibility of loop 1 is observed, causing an incorrect orientation of the catalytic Lys10. This suggests that Lys13 in bTIM plays a crucial role in the functional adaptation of this enzyme to high temperature. Analysis of bTIM single mutants supports this assumption.  (+info)

Arginine 336 and asparagine 333 of the human cholecystokinin-A receptor binding site interact with the penultimate aspartic acid and the C-terminal amide of cholecystokinin. (38/1939)

The cholecystokinin-A receptor (CCK-AR) is a G protein-coupled receptor that mediates important central and peripheral cholecystokinin actions. Residues of the CCK-AR binding site that interact with the C-terminal part of CCK that is endowed with biological activity are still unknown. Here we report on the identification of Arg-336 and Asn-333 of CCK-AR, which interact with the Asp-8 carboxylate and the C-terminal amide of CCK-9, respectively. Identification of the two amino acids was achieved by dynamics-based docking of CCK in a refined three-dimensional model of CCK-AR using, as constraints, previous results that demonstrated that Trp-39/Gln-40 and Met-195/Arg-197 interact with the N terminus and the sulfated tyrosine of CCK, respectively. Arg-336-Asp-8 and Asn-333-amide interactions were pharmacologically assessed by mutational exchange of Arg-336 and Asn-333 in the receptor or reciprocal elimination of the partner chemical functions in CCK. This study also allowed us to demonstrate that (i) the identified interactions are crucial for stabilizing the high affinity phospholipase C-coupled state of the CCK-AR.CCK complex, (ii) Arg-336 and Asn-333 are directly involved in interactions with nonpeptide antagonists SR-27,897 and L-364,718, and (iii) Arg-336 but not Asn-333 is directly involved in the binding of the peptide antagonist JMV 179 and the peptide partial agonist JMV 180. These data will be used to obtain an integrated dynamic view of the molecular processes that link agonist binding to receptor activation.  (+info)

Utilization of amino acids by the isolated perfused sheep liver. (39/1939)

To test Elwyn's suggestion [1970], that high concentrations of amino acids supplied to the liver from the hepatic artery do not stimulate protein synthesis, substrates containing amino acids have been infused into either the hepatic artery or portal vein of isolated sheep livers. The livers received highly oxygenated blood from the hepatic artery and partly deoxygenated blood from the portal vein. There were no significant differences in amino acid uptake (81 +/- 4% of input), urea output (69 +/- 6% of uptake) or 'protein synthesis' as assessed by N accumulation in the liver. Amino acids were actively extracted from the plasma by both routes of infusion and , when the concentrations simul-ted those occurring in the portal vein of fed sheep, the uptake was very similar to that in vivo. When an amino acid mixture based on that absorbed in dogs was infused, the extraction of individual amino acids was similar except for a negligible uptake of valine, leucine and isoleucine. In these experiments protein synthesis was also very low.  (+info)

Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase from mung beans. (40/1939)

Substitution of the asparagine-linked GlcNAc by alpha1,3-linked fucose is a widespread feature of plant as well as of insect glycoproteins, which renders the N-glycan immunogenic. We have purified from mung bean seedlings the GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase (core alpha1,3-fucosyltransferase) that is responsible for the synthesis of this linkage. The major isoform had an apparent mass of 54 kDa and isoelectric points ranging from 6. 8 to 8.2. From that protein, four tryptic peptides were isolated and sequenced. Based on an approach involving reverse transcriptase-polymerase chain reaction with degenerate primers and rapid amplification of cDNA ends, core alpha1,3-fucosyltransferase cDNA was cloned from mung bean mRNA. The 2200-base pair cDNA contained an open reading frame of 1530 base pairs that encoded a 510-amino acid protein with a predicted molecular mass of 56.8 kDa. Analysis of cDNA derived from genomic DNA revealed the presence of three introns within the open reading frame. Remarkably, from the four exons, only exon II exhibited significant homology to animal and bacterial alpha1,3/4-fucosyltransferases which, though, are responsible for the biosynthesis of Lewis determinants. The recombinant fucosyltransferase was expressed in Sf21 insect cells using a baculovirus vector. The enzyme acted on glycopeptides having the glycan structures GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1- 6)Manbeta1-4GlcNAcbet a1-4GlcNAcbeta1-Asn, GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1- 6)Manbeta1-4GlcNAcbet a1-4(Fucalpha1-6)GlcNAcbeta1-Asn, and GlcNAcbeta1-2Manalpha1-3[Manalpha1-3(Manalpha1-6 )Manalpha1-6]Manbeta1 -4GlcNAcbeta1-4GlcNAcbeta1-Asn but not on, e.g. N-acetyllactosamine. The structure of the core alpha1,3-fucosylated product was verified by high performance liquid chromatography of the pyridylaminated glycan and by its insensitivity to N-glycosidase F as revealed by matrix-assisted laser desorption/ionization time of flight mass spectrometry.  (+info)