Effects of time of suckling during the solar day on duration of the postpartum anovulatory interval in Brahman x Hereford (F1) cows. (1/254)

Previously published reports have indicated that postpartum anovulatory intervals can be markedly reduced and rebreeding performance enhanced in Bos taurus cows by eliminating nighttime suckling. We sought to confirm this hypothesis by examining the effects of day, nighttime, and ad libitum suckling on suckling behavior of calves, duration of the postpartum anovulatory interval, and pregnancy rates in 45 fall-calving Brahman x Hereford (F1) cows. Beginning on d 9 to 12 postpartum, calves were removed from lactating cows from 0700 to 1900 (Night-Suckled, n = 15) or from 1900 to 0700 (Day-Suckled, n = 15), or remained with their dams continuously (Ad Libitum-Suckled, n = 15). Cows in each group were maintained with fertile Angus bulls from d 10 postpartum until the first normal luteal phase or 100 d postpartum, whichever occurred first. Cows were observed for estrous behavior twice daily, and jugular blood samples were collected twice weekly for the determination of serum progesterone concentration. Mean number of suckling episodes per 24 h was greater (P < .0001) for the Ad Libitum-Suckled group than either Night- or Day-Suckled groups (5.9+/-.42 vs 3.8+/-.14, and 3.9+/-.32, respectively). Hourly analysis of suckling episodes in the Ad Libitum group indicated that they were not skewed toward a particular period, with suckling occurring at a periodicity of 4 to 6 h. Intervals to the first rise in progesterone > or = 1 ng/mL (32+/-2.5, 32+/-4.5, and 31+/-1.7 d, respectively), first normal luteal phase (38+/-3.1, 38+/-3.8, and 37+/-2.5 d, respectively), and first estrus (43+/-3.5, 40+/-3.9, and 36+/-1.1 d, respectively) did not differ (P > .05) among the three groups. Similarly, cumulative pregnancy rates within 100 d after calving did not differ (P > .05). These results in Bos indicus x Bos taurus (F1) cattle do not support the previous conclusions in Bos taurus that eliminating nighttime suckling reduces the postpartum anovulatory interval.  (+info)

Active immunization with a synthetic fragment of pig inhibin alpha-subunit increases ovulation rate and embryo production in superovulated ewes but season affects its efficiency. (2/254)

Two experiments were designed to determine the effects of active immunization against one of two synthetic peptides from humans (inhibin-like peptide) or pigs (inhibin alpha-subunit) on antibody titres, ovulation rate and embryo production in ewes superovulated with 16 U ovine FSH. In Expt 1, during the breeding season, 30 ewes were subdivided into three groups: group I served as the non-immunized control; group II was immunized against inhibin-like peptide (100 micrograms inhibin-like peptide equivalent, followed by three booster injections); group III was immunized against pig inhibin alpha-subunit conjugated to human serum albumin (96 micrograms for the primary administration and 46 micrograms for the booster). In Expt 2, the efficiency of immunization against pig inhibin alpha-subunit on ovarian response and embryo production was evaluated during the non-breeding season in two groups of ewes (n = 12): group IV was a non-immunized control; Group V was immunized against pig inhibin alpha-subunit. During the breeding season, the ewes immunized against pig inhibin alpha-subunit showed higher antibody titres compared with the group immunized against inhibin-like peptide (P < 0.01) and a significant increase in ovulation rate (12.1) compared with both the control (5.0; P < 0.05) and the inhibin-like peptide-immunized group (3.1; P < 0.01). Immunization against pig inhibin alpha-subunit increased transferable embryo yield 4.5-fold (6.7 versus 1.5; P < 0.01) and improved embryo quality (94.6 versus 40.6%; P < 0.01). During the non-breeding season, immunization against pig inhibin alpha-subunit enhanced ovulation rate from 2.6 in the controls to 9.4 (P < 0.01) but did not affect transferable embryo production (3.9 versus 2.1; P > 0.05) and significantly lowered their quality (54.1 versus 100%; P < 0.01). In conclusion, active immunization against pig inhibin alpha-subunit can improve superovulatory response during the breeding season, while it appears to be unable to increase embryo yield during the seasonal anoestrus.  (+info)

Oestrogen and progesterone receptor immunoreactivity and c-fos expression in the ovine cervix. (3/254)

Immunocytochemistry was used to detect the presence of oestrogen and progesterone receptors in the cervices of prepubertal lambs, seasonally anoestrous ewes, cyclic ewes, and pregnant ewes of known gestational stages, to define the roles of gonadal steroids in cervical function. The presence of the immediate early gene product, c-Fos, a marker for cellular activation, was also investigated using immunocytochemistry and in situ hybridization. Oestrogen receptor immunoreactivity was restricted to the endometrium on days 0-3 of the oestrous cycle (day 0 = oestrus). In immature animals, very few scattered nuclei in the endometrium were immunoreactive. Oestrogen receptor immunoreactivity was not apparent in the endometrium during the remainder of the oestrous cycle or in this region in anoestrous animals. In pregnant ewes, oestrogen receptor immunostaining appeared as relatively few isolated nuclei in the connective tissue stroma. Progesterone receptor immunoreactivity was found in the endometrium at days 0-3 of the oestrous cycle and also in the luminal epithelium, the myometrium and the blood vessels. Progesterone receptor immunoreactivity was also found in these regions, with the exception of the endometrium, at all other stages examined. Immunostaining for c-Fos was present in the endometrium at days 0-3 of the oestrous cycle, and some scattered immunopositive nuclei were present in prepubertal animals. c-Fos immunoreactivity was also found in the myometrium and in blood vessels at all other stages examined. Visualization of c-fos gene expression by in situ hybridization showed that it occurred in the luminal epithelium and blood vessels at oestrus, but was restricted to the blood vessels in all other samples examined.  (+info)

Effect of progesterone on the GnRH-induced secretion of oestradiol and androstenedione from the autotransplanted ovary of the anoestrous ewe. (4/254)

Two experiments were conducted during the anoestrous period in Border Leicester x Merino ewes with ovarian autotransplants to study the effects of a single injection of 20 mg progesterone on follicular steroid secretion. The aim of these experiments was to determine whether pretreatment with a 20 mg intramuscular injection of progesterone could reduce GnRH-induced ovarian steroid secretion in anoestrous ewes. In both experiments, an injection of 150 ng GnRH induced an LH pulse in all ewes with a maximum concentration 10 min (the first post-injection sample) after injection. Oestradiol and androstenedione secretion increased progressively after the GnRH-induced LH pulse and reached maximum rates of secretion between 60 and 90 min before decreasing slowly to pre-injection rates at 150 min. There were no differences in the pattern of secretion of oestradiol (measured in both experiments) or androstenedione (measured only in Expt 2). In Expt 1, the injection of progesterone 72 h before the challenge with GnRH had no effect on the maximum rate of oestradiol secretion from the autotransplanted ovary. However, in Expt 2, when progesterone was given either 36 or 60 h before GnRH, there was a significant suppression in the maximum rate of secretion of both oestradiol and androstenedione between 60 and 90 min after GnRH injection. These data show that pretreatment of anoestrous sheep with progesterone can suppress LH-stimulated steroid secretion from the ovary and indicate that progesterone may have a direct effect on oestrogenic follicles in sheep.  (+info)

Interactive effects of central leptin and peripheral fuel oxidation on estrous cyclicity. (5/254)

A 48-h period of fasting inhibits estrous cycles in Syrian hamsters, and fasting-induced anestrus can be prevented by intracerebroventricular treatment with leptin during the fasting period. In the present experiment, the effects of intracerebroventricular leptin were blocked by systemic treatment with inhibitors of metabolic fuel oxidation. Leptin was infused continuously into the lateral ventricles (1 microgram/day) during fasting on days 1 and 2 of the estrous cycle. Intraperitoneal injection of 2-deoxy-D-glucose (2DG) was used to block both central and peripheral glucose oxidation, and intragastric treatment with methyl palmoxirate (MP) was used to inhibit peripheral long-chain fatty acid oxidation during the fasting and leptin-treatment period. 2DG or MP were administered at doses that did not induce anestrus in ad libitum-fed hamsters. Despite elevated central levels of leptin, fasting-induced anestrus occurred in hamsters treated with either 2DG or MP. Thus an elevated intracerebroventricular leptin concentration is not a sufficient condition for normal estrous cycles when fuel oxidation is inhibited. These results raise the possibility that central leptin influences reproduction by indirect effects on peripheral fuel metabolism.  (+info)

Hormonal control of urokinase plasminogen activator secretion by sheep ovarian surface epithelial cells. (6/254)

Secretion of urokinase plasminogen activator (uPA) by ovarian surface epithelium (OSE) adjacent to the preovulatory ovine follicle has been implicated in apical tissue degradation and follicular rupture. In vitro experiments were designed to test the hypothesis that uPA release by OSE is under direct hormonal control. Epithelial cells were isolated from the ovarian surface of sheep using a polytetrafluorethylene scraper designed to dislodge adherent cells from culture flasks. Amidolytic cleavage of a uPA-specific chromogen (carbobenzoxy-L-gamma-glutamyl [alpha-ot-but]-glycyl-arginine-p-nitroanilide monoacetate) was used as a measure of enzymatic bioactivity in OSE-conditioned incubation media. Secretion of uPA by OSE suspensions from proestrous ewes was stimulated by exposure (2 h) to a preovulatory surge-like concentration of LH. OSE cells obtained during the luteal phase or anestrus were not responsive to LH. Baseline rates of uPA secretion and expression of estradiol receptors (in situ immunofluorescence detection) were not affected by reproductive status. Induction of uPA secretion by anestrous OSE was attained after priming (6 h) with estradiol-17beta; responsiveness was attributed to gonadotropin receptor (ligand binding) up-regulation. Monolayers of OSE established on polyethylene membranes secreted uPA predominately in a basal (i.e., toward the substratum) direction. We suggest that OSE in juxtaposition with the (hyperemic) wall of the preovulatory follicle is perfused by surge levels of LH, invoking uPA release into underlying ovarian tissues.  (+info)

Ovarian function in nutritionally induced anoestrous cows: effect of exogenous gonadotrophin-releasing hormone in vivo and effect of insulin and insulin-like growth factor I in vitro. (7/254)

Ovarian function of nutritionally induced anoestrus cows was evaluated in vivo (Expt 1) and in vitro (Expt 2). In Expt 1, 32 nutritionally induced anoestrous beef cows were divided into four treatment groups receiving: (1) saline infusions at one pulse every 4 h for 13 days (control); (2) 2 micrograms GnRH at one pulse every 4 h (2 micrograms infused in 1.8 ml saline over 5 min) for 13 days (GnRH-4); (3) 2 micrograms GnRH at one pulse every 1 h for 13 days (GnRH-1); and (4) continuous infusion of 2 micrograms GnRH (a total of 2 micrograms in 34 ml h-1) for 13 days (GnRH-C). On the last day of treatment, cows were killed, ovaries were removed and follicular fluid samples (n = 149) were collected. The percentage of cows with luteal activity on day 13 was significantly different (P < 0.01) among treatments (0, 25, 75 and 25% for control, GnRH-4, GnRH-1 and GnRH-C cows, respectively). Owing to the large percentage of ovulatory cows in the GnRH-1 group (n = 6), anovulatory cows (n = 2) were removed from this treatment group for statistical analysis, as were cows with luteal tissue from the GnRH-4 (n = 2) and GnRH-C (n = 2) groups. The numbers of small (1.0-4.9 mm) and medium plus large (> or = 5 mm) follicles were not affected (P > 0.10) by treatment. However, GnRH-4 cows (n = 6) had greater (P < 0.05) concentrations of oestradiol in follicular fluid than did control (n = 8) but not GnRH-1 (n = 6) or GnRH-C (n = 6) cows. Concentrations of insulin-like growth factor I were greater (P < 0.05) in the follicular fluid of GnRH-1 cows than in all other treatment groups. Concentrations of androstenedione and progesterone in follicular fluid were not affected (P > 0.10) by treatment or follicle size. The binding activity of insulin-like growth factor binding proteins was not affected by GnRH treatment. However, the binding activity of insulin-like growth factor binding protein 2, 29-32 kDa and 22 kDa insulin-like growth factor binding proteins were greater (P < 0.05) in small versus medium plus large follicles. In Expt 2, granulosa cells were collected from nutritionally anoestrous cows to determine whether ovarian cells from anoestrous cows have the capacity to respond to insulin-like growth factor I or insulin in vitro. Both insulin-like growth factor I (20 and 200 ng ml-1) and insulin (10, 100 and 1000 ng ml-1) increased (P < 0.05) granulosa cell proliferation and progesterone production. In conclusion, pulsatile infusion of 2 micrograms GnRH (every 1 or 4 h) for 13 days into nutritionally induced anoestrous cows results in increased intrafollicular oestradiol and insulin-like growth factor I concentrations and can stimulate ovulation without markedly affecting concentrations of androstenedione or progesterone, or the binding activity of insulin-like growth factor binding proteins, in follicular fluid. In addition, granulosa cells from nutritionally induced anoestrous cows have the capacity to respond to insulin-like growth factor I and insulin in vitro, indicating that the decrease in trophic factors observed with restricted feeding does not reduce the response of the ovary to insulin-like growth factor I and insulin.  (+info)

Segmental aplasia of the left paramesonephric duct in the cow. (8/254)

Segmental aplasia of the left uterine horn in a multiparous Holstein cow was diagnosed by palpation and ultrasonography. Treatment with prostaglandin was unsuccessful in eliminating the fluid from the distended uterine horn. Segmental aplasia should be included in the list of differential diagnoses for cows with nonresponsive uterine enlargement.  (+info)