CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. (1/314)

CD38 is a type II transmembrane glycoprotein that is expressed by many cell types including lymphocytes. Signaling through CD38 on B lymphocytes can mediate B cell activation, proliferation, and cytokine secretion. Additionally, coligation of CD38 and the B cell Ag receptor can greatly augment B cell Ag receptor responses. Interestingly, the extracellular domain of CD38 catalyzes the conversion of NAD+ into nicotinamide, ADP-ribose (ADPR), and cyclic ADPR (cADPR). cADPR can induce intracellular calcium release in an inositol trisphosphate-independent manner and has been hypothesized to regulate CD38-mediated signaling. We demonstrate that replacement of the cytoplasmic tail and the transmembrane domains of CD38 did not impair CD38 signaling, coreceptor activity, or enzyme activity. In contrast, independent point mutations in the extracellular domain of CD38 dramatically impaired signal transduction. However, no correlation could be found between CD38-mediated signaling and the capacity of CD38 to catalyze an enzyme reaction and produce cADPR, ADPR, and/or nicotinamide. Instead, we propose that CD38 signaling and coreceptor activity in vitro are regulated by conformational changes induced in the extracellular domain upon ligand/substrate binding, rather than on actual turnover or generation of products.  (+info)

Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. (2/314)

Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral-CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral-CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.  (+info)

An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. (3/314)

Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of the sarcoplasmic reticulum (the ryanodine receptor), raising the possibility that cADP-ribose may influence arrhythmogenic mechanisms in the heart. 8-Amino-cADP-ribose, an antagonist of cADP-ribose, suppressed oscillatory activity associated with overloading of intracellular Ca2+ stores in cardiac myocytes exposed to high doses of the beta-adrenoreceptor agonist isoproterenol or the Na+/K+-ATPase inhibitor ouabain. The oscillations suppressed by 8-amino-cADP-ribose included intracellular Ca2+ waves, spontaneous action potentials, after-depolarizations, and transient inward currents. Another antagonist of cADP-ribose, 8-bromo-cADP-ribose, was also effective in suppressing isoproterenol-induced oscillatory activity. Furthermore, in the presence of ouabain under conditions in which there was no arrhythmogenesis, exogenous cADP-ribose was found to be capable of triggering spontaneous contractile and electrical activity. Because enzymatic machinery for regulating the cytosolic cADP-ribose concentration is present within the cell, we propose that 8-amino-cADP-ribose and 8-bromo-cADP-ribose suppress cytosolic Ca2+ oscillations by antagonism of endogenous cADP-ribose, which sensitizes the Ca2+ release channels of the sarcoplasmic reticulum to Ca2+.  (+info)

The role of ryanodine receptors in the cyclic ADP ribose modulation of the M-like current in rodent m1 muscarinic receptor-transformed NG108-15 cells. (4/314)

1. The role of cyclic ADP ribose and ryanodine receptors in the inhibition of the M-like current (IK(M,ng)) by acetylcholine was investigated in m1 muscarinic receptor-transformed mouse neuroblastoma-rat glioma hybrid (NG108-15) cells using patch-clamp techniques and calcium microfluorimetry. 2. Acetylcholine (1-100 microM) decreased IK(M,ng) by up to 55 %. Application, via the patch pipette, of the cyclic ADP ribose antagonists 8-amino-cyclic ADP ribose (10-100 microM) and 8-bromo-cyclic ADP ribose (100-1000 microM) reduced this inhibition of IK(M,ng) in a concentration-dependent manner. The half-maximal inhibition concentrations for 8-amino- cyclic ADP ribose and 8-bromo-cyclic ADP ribose were around 40 microM and 1 mM, respectively. 3. Neither of the cyclic ADP ribose antagonists altered the amplitude of IK(M,ng) per se, or the incidence of the concurrent Ca2+-activated K+ current (IIK(Ca)) activation, also mediated by acetylcholine. 4. The ryanodine receptor modulators ryanodine (1-10 microM) and Ruthenium Red (10 microM) did not alter IK(M,ng) amplitude or IK(M,ng) inhibition mediated by acetylcholine. There was a statistically significant increase in the proportion of cells showing outward currents in the presence of Ruthenium Red. 5. Intracellular calcium levels measured with fura-2 microfluorimetry were increased with low concentrations of ryanodine (1 microM), more consistently with caffeine (10 mM), and in almost every case with both bradykinin (300 nM) and acetylcholine (100 microM). Caffeine-, but not bradykinin-evoked responses were abolished by preincubation with ryanodine (10 microM). 6. The fast 'rundown rate' of the M-current recorded in rat superior cervical ganglion cells under whole-cell conditions precluded an investigation of the effects of intracellular dialysis of cyclic ADP ribose. However, when cyclic ADP ribose (5 microM) was applied directly to the cytoplasmic face of inside-out membrane patches excised from rat superior cervical ganglion cells containing M-channels, it had no effect on the main parameters of single channel activity (conductance, mean open time or frequency of opening). 7. These results indicate that cyclic ADP ribose acts on a specific intracellular site to mediate IK(M,ng) inhibition. However, unlike previously established effects of cyclic ADP ribose, the ryanodine receptor is not required, suggesting that another molecular target may be involved. Studies at the single channel level indicate that cyclic ADP ribose may not act directly on the M-channels in inside-out patches.  (+info)

Hydrolysis of NADP+ by platelet CD38 in the absence of synthesis and degradation of cyclic ADP-ribose 2'-phosphate. (5/314)

CD38 is a multifunctional cell surface ectoenzyme that catalyzes both the synthesis of cyclic ADP-ribose from NAD+ and its hydrolysis to ADP-ribose. In this work, we investigated the metabolism of NADP+ by CD38 expressed on human platelets. Incubation of either platelet membranes or intact cells with NADP+ resulted in the rapid and time-dependent accumulation of ADP-ribose 2'-phosphate that paralleled the consumption of the substrate. However, under the same conditions, synthesis of cyclic ADP-ribose 2'-phosphate was not observed. By immunoprecipitation experiments, we identified CD38 as the enzyme responsible for the observed NADP+ glycohydrolase activity. The lack of detection of cyclic ADP-ribose 2'-phosphate was not due to its rapid hydrolysis, since direct incubation of platelet membranes with cyclic ADP-ribose 2'-phosphate did not result in the formation of ADP-ribose 2'-phosphate. By contrast, the same membrane samples expressed a significant ability to hydrolyze cyclic ADP-ribose to ADP-ribose. The absence of cyclic ADP-ribose 2'-phosphate hydrolase activity was also confirmed using high concentrations of substrate and by analysing both intact Jurkat T-lymphocytes and immunoprecipitated CD38. These results indicate that CD38, which is a multifunctional enzyme towards NAD+, displays exclusively a NADP+ glycohydrolase activity and is unable to catalyze both the synthesis and the hydrolysis of cyclic ADP-ribose 2'-phosphate.  (+info)

Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. (6/314)

Actions of photoreleased cADP-ribose (cADPR), a novel regulator of calcium-induced calcium release (CICR) from ryanodine-sensitive stores, were investigated in cardiac myocytes. Photoreleased cADPR caused an increase in the magnitude of whole-cell calcium transients studied in mammalian cardiac ventricular myocytes (both guinea-pig and rat) using confocal microscopy). Approx. 15 s was required following photorelease of cADPR for the development of its maximal effect. Photoreleased cADPR also increased the frequency of calcium 'sparks', which are thought to be elementary events which make up the whole-cell calcium transient, and were studied in rat myocytes, but had little or no effect on spark characteristics (amplitude, rise time, decay time and distance to half amplitude). The potentiating effects of photoreleased cADPR on both whole-cell transients and the frequency of calcium sparks were prevented by cytosolic application of the antagonist 8-amino-cADPR (5 microM). These experiments, therefore, provide the first evidence in any cell type for an effect of cADPR on calcium sparks, and are the first to show the actions of photoreleased cADPR on whole-cell calcium transients in mammalian cells. The observations are consistent with the effects of cADPR in enhancing the calcium sensitivity of CICR from the sarcoplasmic reticulum in cardiac ventricular myocytes, leading to an increase in the probability of occurrence of calcium sparks and to an increase in whole-cell calcium transients. The slow time-course for development of the full effect on whole-cell calcium transients might be taken to indicate that the influence of cADPR on CICR may involve complex molecular interactions rather than a simple direct action of cADPR on the ryanodine-receptor channels.  (+info)

CD38/ADP-ribosyl cyclase: A new role in the regulation of osteoclastic bone resorption. (7/314)

The multifunctional ADP-ribosyl cyclase, CD38, catalyzes the cyclization of NAD(+) to cyclic ADP-ribose (cADPr). The latter gates Ca(2+) release through microsomal membrane-resident ryanodine receptors (RyRs). We first cloned and sequenced full-length CD38 cDNA from a rabbit osteoclast cDNA library. The predicted amino acid sequence displayed 59, 59, and 50% similarity, respectively, to the mouse, rat, and human CD38. In situ RT-PCR revealed intense cytoplasmic staining of osteoclasts, confirming CD38 mRNA expression. Both confocal microscopy and Western blotting confirmed the plasma membrane localization of the CD38 protein. The ADP-ribosyl cyclase activity of osteoclastic CD38 was next demonstrated by its ability to cyclize the NAD(+) surrogate, NGD(+), to its fluorescent derivative cGDP-ribose. We then examined the effects of CD38 on osteoclast function. CD38 activation by an agonist antibody (A10) in the presence of substrate (NAD(+)) triggered a cytosolic Ca(2+) signal. Both ryanodine receptor modulators, ryanodine, and caffeine, markedly attenuated this cytosolic Ca(2+) change. Furthermore, the anti-CD38 agonist antibody expectedly inhibited bone resorption in the pit assay and elevated interleukin-6 (IL-6) secretion. IL-6, in turn, enhanced CD38 mRNA expression. Taken together, the results provide compelling evidence for a new role for CD38/ADP-ribosyl cyclase in the control of bone resorption, most likely exerted via cADPr.  (+info)

Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores. (8/314)

Long-term depression (LTD) of synaptic transmission can be induced by several mechanisms, one thought to involve Ca2+-dependent activation of postsynaptic nitric oxide (NO) synthase and subsequent diffusion of NO to the presynaptic terminal. We used the stable NO donor S-nitroso-N-acetylpenicillamine (SNAP) to study the NO-dependent form of LTD at Schaffer collateral-CA1 synapses in vitro. SNAP (100 microM) enhanced the induction of LTD via a cascade that was blocked by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonopentanoic acid (50 microM), NO guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (10 microM), and the PKG inhibitor KT5823 (1 microM). We further show that LTD induced by low-frequency stimulation in the absence of SNAP also is blocked by KT5823 or Rp-8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate (10 microM), cyclic guanosine 3',5' monophosphate-dependent protein kinase (PKG) inhibitors with different mechanisms of action. Furthermore SNAP-facilitated LTD was blocked when release from intracellular calcium stores was inhibited by ryanodine (10 microM). Finally, two cell-permeant antagonists of the cyclic ADP-ribose binding site on ryanodine receptors also were able to block the induction of LTD. These results support a cascade for induction of homosynaptic, NO-dependent LTD involving activation of guanylyl cyclase, production of guanosine 3',5' cyclic monophosphate and subsequent PKG activation. This process has an additional requirement for release of Ca2+ from ryanodine-sensitive stores, perhaps dependent on the second-messenger cyclic ADP ribose.  (+info)