Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. (25/2621)

Urinary arsenic (As) concentrations were evaluated as a biomarker of exposure in a U.S. population chronically exposed to inorganic As (InAs) in their drinking water. Ninety-six individuals who consumed drinking water with As concentrations of 8-620 microg/L provided first morning urine voids for up to 5 consecutive days. The study population was 56% male, and 44% was younger than 18 years of age. On one day of the study period, all voided urines were collected over a 24-hr period. Arsenic intake from drinking water was estimated from daily food diaries. Comparison between the concentration of As in individual urine voids with that in the 24-hr urine collection indicated that the concentration of As in urine was stable throughout the day. Comparison of the concentration of As in each first morning urine void over the 5-day study period indicated that there was little day-to-day variation in the concentration of As in urine. The concentration of As in drinking water was a better predictor of the concentration of As in urine than was the estimated intake of As from drinking water. The concentration of As in urine did not vary by gender. An age-dependent difference in the concentration of As in urine may be attributed to the higher As dosage rate per unit body weight in children than in adults. These findings suggest that the analysis of a small number of urine samples may be adequate to estimate an individual's exposure to InAs from drinking water and that the determination of the concentration of InAs in a drinking water supply may be a useful surrogate for estimating exposure to this metalloid.  (+info)

Detection of infectious Cryptosporidium parvum oocysts in surface and filter backwash water samples by immunomagnetic separation and integrated cell culture-PCR. (26/2621)

A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  (+info)

Chloramine-induced haemolysis presenting as erythropoietin resistance. (27/2621)

BACKGROUND: In December 1996 we identified an outbreak of erythropoietin (rHuEpo) resistance requiring a substantial increase in rHuEpo dosage in one of our four haemodialysis (HD) units. The dialysate chloramine levels in this unit had risen from <0.1 p.p.m. in 1996 to 0.25-0.3 p.p.m. in 1997. In the other three HD units levels remained <0.1 p.p.m. Other parameters of water quality were within accepted standards. METHODS: Monthly records of haemoglobin level and rHuEpo dose were available for 148 patients between January 1996 and May 1998. Seventy-two patients, with no recognized cause of rHuEpo resistance, were analysed in detail (August 1997 to April 1998). A subgroup of 15 patients was examined for evidence of haemolysis during HD (methaemoglobin and haptoglobin levels, reticulocyte counts and Heinz bodies). Larger carbon columns were installed in December 1997 to effect chloramine removal. RESULTS: There was an increase in mean methaemoglobinaemia of 23% (P<0.01) and a 21% fall in mean haptoglobin (P<0.01) across HD, although no patient had a reticulocytosis and only one patient with G6PD deficiency had Heinz bodies. Following installation of larger carbon columns there was an 18.6% rise (P<0.001) in mean haemoglobin level and a subsequent 25.0% reduction (P<0.001) in mean rHuEpo dose. Intradialytic changes in methaemoglobin and haptoglobin were abolished. The dialysate chloramine levels fell to < 0.1 p.p.m. Water company records subsequently revealed a sustained twofold increase in mains water chloramine from November 1996. CONCLUSIONS: This is the first report linking chloramine exposure and rHuEpo resistance, with only subtle signs of haemolysis. Unheralded changes in mains water constituents can directly affect dialysate water quality and clinical outcomes.  (+info)

Relations between exposure to arsenic, skin lesions, and glucosuria. (28/2621)

OBJECTIVES: Exposure to arsenic causes keratosis, hyperpigmentation, and hypopigmentation and seemingly also diabetes mellitus, at least in subjects with skin lesions. Here we evaluate the relations of arsenical skin lesions and glucosuria as a proxy for diabetes mellitus. METHODS: Through existing measurements of arsenic in drinking water in Bangladesh, wells with and without arsenic contamination were identified. Based on a questionnaire, 1595 subjects > or = 30 years of age were interviewed; 1481 had a history of drinking water contaminated with arsenic whereas 114 had not. Time weighted mean arsenic concentrations and mg-years/l of exposure to arsenic were estimated based on the history of consumption of well water and current arsenic concentrations. Urine samples from the study subjects were tested by means of a glucometric strip. People with positive tests were considered to be cases of glucosuria. RESULTS: A total of 430 (29%) of the exposed people were found to have skin lesions. Corresponding to drinking water with < 0.5, 0.5-1.0, and > 1.0 mg/l of arsenic, and with the 114 unexposed subjects as the reference, the prevalence ratios for glucosuria, as adjusted for age and sex, were 0.8, 1.4, and 1.4 for those without skin lesions, and 1.1, 2.2, and 2.6 for those with skin lesions. Taking exposure as < 1.0, 1.0-5.0, > 5.0-10.0 and > 10.0 mg-years/l of exposure to arsenic the prevalence ratios, similarly adjusted, were 0.4, 0.9, 1.2, and 1.7 for those without and 0.8, 1.7, 2.1, and 2.9 for those with skin lesions. All series of risk estimates were significant for trend, (p < 0.01). CONCLUSIONS: The results suggest that skin lesions and diabetes mellitus, as here indicated by glucosuria, are largely independent effects of exposure to arsenic although glucosuria had some tendency to be associated with skin lesions. Importantly, however, glucosuria (diabetes mellitus) may occur independently of skin lesions.  (+info)

Surveying vendors of street-vended food: a new methodology applied in two Guatemalan cities. (29/2621)

Lack of reliable data about street vendors, who are difficult to survey, has hampered efforts to improve the safety of street-vended food. A two-phase method for sampling vendors, surveying first in areas of concentrated vending activity identified by local authorities and second in randomly selected areas, was developed and implemented in two Guatemalan cities where street-vended food had been implicated in cholera transmission. In a 4-day survey in Escuintla, 59 vendors (42 from phase 1, 17 from phase 2) were interviewed. They demonstrated good knowledge of food safety and cholera but unsafe practices, implying that more effective, practical training was needed. In a 6-day survey in Guatemala City, 78 vendors (77 from phase 1, 1 from phase 2) were interviewed. Sixty-eight (87 %) vendors stored water, usually in wide-mouthed vessels prone to contamination; this led to a field test of a new system for safe water storage. Useful information for public health planning and intervention can be gathered rapidly with this new method for surveying street vendors.  (+info)

Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. (30/2621)

We assessed the levels of arsenic in drilled wells in Finland and studied the association of arsenic exposure with the risk of bladder and kidney cancers. The study persons were selected from a register-based cohort of all Finns who had lived at an address outside the municipal drinking-water system during 1967-1980 (n = 144,627). The final study population consisted of 61 bladder cancer cases and 49 kidney cancer cases diagnosed between 1981 and 1995, as well as an age- and sex-balanced random sample of 275 subjects (reference cohort). Water samples were obtained from the wells used by the study population at least during 1967-1980. The total arsenic concentrations in the wells of the reference cohort were low (median = 0.1 microg/L; maximum = 64 microg/L), and 1% exceeded 10 microg/L. Arsenic exposure was estimated as arsenic concentration in the well, daily dose, and cumulative dose of arsenic. None of the exposure indicators was statistically significantly associated with the risk of kidney cancer. Bladder cancer tended to be associated with arsenic concentration and daily dose during the third to ninth years prior to the cancer diagnosis; the risk ratios for arsenic concentration categories 0.1-0.5 and [Greater/equal to] 0.5 microg/L relative to the category with < 0.1 microg/L were 1.53 [95% confidence interval (CI), 0.75-3.09] and 2.44 (CI, 1.11-5.37), respectively. In spite of very low exposure levels, we found some evidence of an association between arsenic and bladder cancer risk. More studies are needed to confirm the possible association between arsenic and bladder cancer risk at such low exposure levels.  (+info)

The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. (31/2621)

To determine the relationship of arsenic-associated skin lesions and degree of arsenic exposure, a cross-sectional study was conducted in Bangladesh, where a large part of the population is exposed through drinking water. Four villages in Bangladesh were identified as mainly dependent on wells contaminated with arsenic. We interviewed and examined 1,481 subjects [Greater/equal to] 30 years of age in these villages. A total of 430 subjects had skin lesions (keratosis, hyperpigmentation, or hypopigmentation). Individual exposure assessment could only be estimated by present levels and in terms of a dose index, i.e., arsenic levels divided by individual body weight. Arsenic water concentrations ranged from 10 to 2,040 microg/L, and the crude overall prevalence rate for skin lesions was 29/100. After age adjustment to the world population the prevalence rate was 30. 1/100 and 26.5/100 for males and females, respectively. There was a significant trend for the prevalence rate both in relation to exposure levels and to dose index (p < 0.05), regardless of sex. This study shows a higher prevalence rate of arsenic skin lesions in males than females, with clear dose-response relationship. The overall high prevalence rate in the studied villages is an alarming sign of arsenic exposure and requires an urgent remedy.  (+info)

Mutagenic drinking water and risk of male esophageal cancer: a population-based case-control study. (32/2621)

Drinking mutagenic downstream water from the Huangpu River was hypothesized to have increased the risk for male esophageal cancer in Shanghai, China. The authors conducted a population-based case-control study of a total of 71 esophageal cancer deaths and 1,122 controls collected during a 5-year follow-up period, 1984-1988, from four male cohorts born before January 1, 1944, living in four communities consuming water with different mutagenicities in the Shanghai area. The controls represented a 1% random sample of the defined living cohorts selected at the end of each of the 5 years of follow-up. Logistic regression showed an odds ratio of 2.77 (95% confidence interval: 1.52, 5.03) for drinking mutagenic downstream water from the river versus drinking nonmutagenic upstream water after controlling for possible confounders including age, disease history (hepatitis, cirrhosis, schistosomiasis, digestive tract ulcer), hazardous occupational history, pesticide exposure, lifestyle factors (cigarette smoking, tea intake, and alcohol intake), dietary habits (intake of pickled vegetables, maize, peanuts, and cured meat), education, poverty, urban environment, and water chlorination.  (+info)