Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. (1/199)

PURPOSE: Proliferative vitreoretinopathy (PVR) is a major cause of failure of retinal detachment surgery. It is believed to be a wound-healing process in the retina. Many of the cellular functions are influenced by cytokines and growth factors such as interleukins (ILs). The present study was conducted to investigate the presence of transforming growth factor-beta 2 (TGF-beta2), basic fibroblast growth factor (bFGF), IL-1beta, IL-6, and protein in the vitreous of patients with retinal detachment and to determine the value of these mediators in predicting the future development of PVR. METHODS: A prospective study was conducted in 140 consecutive patients with rhegmatogenous retinal detachment in whom vitrectomy was considered necessary. Vitreous samples were analyzed for the presence of TGF-beta2, bFGF, IL-1beta, IL-6, and protein. Patients were then followed up for 3 months for the development of postoperative PVR. RESULTS: The mean levels of TGF-beta2, bFGF, IL-1beta, and protein in the vitreous were significantly higher (P < 0.05) in patients with preoperative PVR compared with those without. The mean levels of TGF-beta2, bFGF, IL-6, and protein in the vitreous were significantly higher (P < 0.05) in patients who had postoperative PVR compared with those who did not. Multivariate logistic regression analysis showed IL-6 and protein to be significant (P < 0.05), independent, predictive risk factors for the development of PVR. CONCLUSIONS: The various cytokines may play a role in the pathobiology of PVR. High vitreous levels of IL-6 and protein were identified as significant risk factors for PVR. A model was developed to predict the probability of development of postoperative PVR in these patients, and it may be used to indicate intravitreal pharmacologic treatment for those at risk.  (+info)

Vitreous levels of intercellular adhesion molecule 1 (ICAM-1) as a risk indicator of proliferative vitreoretinopathy. (2/199)

AIM: To investigate whether high vitreous levels of the soluble intercellular adhesion molecule 1 (sICAM-1) may be related to clinical risk factors of proliferative vitreoretinopathy (PVR) and whether their measurement may serve as an additional risk indicator of this complication in eyes with rhegmatogenous retinal detachment (RRD). METHODS: Levels of sICAM-1 were measured by enzyme linked immunosorbent assays (ELISA) in vitreous from 36 eyes with RRD clinically considered to be at high risk of developing PVR (large retinal breaks, vitreous haemorrhage, long standing RRD, and previous vitreoretinal surgery). Levels of sICAM-1 in this group were compared with those in vitreous from 31 eyes with RRD without clinical risk factors for PVR, 32 eyes with established PVR and 10 eyes with macular holes. RESULTS: Vitreous from eyes with RRD at high risk of developing PVR contained significantly higher levels of sICAM-1 (range 6.1-97.7 ng/ml; Mann-Whitney test, p=0.0002) than those from eyes with RRD at low risk of developing this complication (range 4.8-17.7 ng/ml). Vitreous sICAM-1 levels in eyes with RRD at high risk of developing PVR were significantly lower than in eyes with established PVR (p=0.037), but higher than in eyes with macular holes (p <0.0001). Levels of sICAM-1 >/=15 ng/ml (3 x median of the levels present in control eyes) provide a useful cut off point for a highly specific test (96.7%) with high positive (91.6%) and negative (96.7%) predictive values, despite a relatively low sensitivity (30. 5%). CONCLUSIONS: The present findings suggest that laboratory measurement of sICAM-1 levels in vitreous from eyes with RRD may constitute an additional factor for identifying patients at high risk of PVR. Hence, determination of sICAM-1 levels may aid in the monitoring of patients likely to develop this complication and in the identification of patients who may benefit from adjuvant anti-inflammatory therapy.  (+info)

Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. (3/199)

PURPOSE: To improve our understanding of how retinal pigment epithelial (RPE) cells behave in vivo and to establish similarities with dedifferentiation and adaptive events observed in RPE cells cultured under simulated intraocular pathologic conditions. At the same time, to examine the origin of epithelioid-shaped and fibroblast/fusiform-shaped cells in epiretinal membranes (ERM) from proliferative vitreoretinopathy (PVR). METHODS: Cells of ERM were studied by electron-immunocytochemical techniques, using simple, double, and triple immunostaining for cytokeratins (CK), vimentin (Vim), and glial fibrillary acidic protein (GFAP). Ultrastructural morphology analysis was also carried out. Adult human RPE cells were obtained and cultured with normal and pathologic vitreous from proliferative vitreoretinal disorders, subretinal fluid aspirates from retinal detachment, and normal human serum. Their cytoskeleton was fractionated at 7 (early cultures) and 24 (late cultures) days of culture, electrophoresed, immunoblotted for intermediate filament proteins, and quantified by densitometric analysis for each condition. Changes in phenotype characteristics were also evaluated. RESULTS: Epithelioid-shaped and fibroblast/fusiform-shaped cells, resembling RPE cells, expressed CK-Vim-GFAP simultaneously as intermediate filament proteins in their cytoskeleton. RPE cells in culture also expressed CK-Vim-GFAP and changed from an epithelial shape to a migratory fibroblast/fusiform-shaped phenotype in the presence of subretinal fluid aspirates and pathologic vitreous from proliferative intraocular disorders. In simulated cultures of proliferative intraocular disorders, cells decreased or retained their CK7, CK8, and CK18, retained Vim, and increased CK19 and GFAP, while their mesenchymal morphology became clearer over time. CONCLUSIONS: Studies of intermediate filament proteins in vivo suggest that dedifferentiation occurs in RPE cells in ERM. Dedifferentiated RPE cells may be responsible for epithelioid-like and fibroblast/fusiform-like cells. Furthermore, changes in intermediate filament protein levels were observed in RPE cells in simulated cultures of proliferative intraocular disorders. These changes were linked to cells acquiring a mesenchymal migratory, phenotype. Results indicate that the dedifferentiation of RPE cells occurs both in vivo and in vitro and that it can be explained as an epithelial-mesenchymal transition.  (+info)

Platelet-derived growth factor plays a key role in proliferative vitreoretinopathy. (4/199)

PURPOSE: The action of growth factors is thought to make a substantial contribution to the events leading to proliferative vitreoretinopathy (PVR). In this study, the importance of platelet-derived growth factor (PDGF) was tested in a rabbit model of PVR. METHODS: The approach was to compare the extent of PVR induced by cells that do or do not express the receptors for PDGF and therefore differ in their ability to respond to PDGF. RESULTS: Mouse embryo fibroblasts derived from PDGF receptor knock-out embryos that do not express either of the two PDGF receptors induced PVR poorly when injected into the eyes of rabbits that had previously undergone gas vitrectomy. Re-expression of the PDGF beta receptor in these cells did not improve the ability of the cells to cause PVR. In contrast, injection of cells expressing the PDGF alpha receptor resulted in stage 3 or higher PVR in 8 of 10 animals. CONCLUSIONS: These findings show that PDGF makes an important contribution to the development of PVR in this animal model. Furthermore, there is a marked difference between the two receptors for PDGF, and it is the PDGF alpha receptor that is capable of driving events that lead to PVR.  (+info)

Detection of cytokine mRNA production in infiltrating cells in proliferative vitreoretinopathy using reverse transcription polymerase chain reaction. (5/199)

AIMS: To determine whether the infiltrating cells in the vitreous and subretinal fluid of patients with proliferative vitreoretinopathy (PVR) express messenger RNA for various cytokines found in this condition. METHODS: The presence of mRNA coding for HPRT, IL-6, IL-1beta, IL-8, and TNFalpha was investigated in 20 vitreous and subretinal fluid (SRF) samples from patients with PVR by reverse transcriptase polymerase chain reaction (RT-PCR). 16 samples from patients with retinal detachment and macular holes were used as controls. RESULTS: HPRT was detected in all samples of PVR and in 11 (69%) control cases. Patients with PVR demonstrated mRNA for the cytokines tested more often than controls. The difference was statistically significant. CONCLUSION: The presence of mRNA encoding for IL-6, IL-1beta, IL-8, and TNFalpha is significantly detected by RT-PCR in vitreous and SRF samples of patients with PVR, indicating local production of these cytokines by vitreous and SRF cells.  (+info)

Human Muller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. (6/199)

PURPOSE: To determine differences of K+ channel activity between Muller glial cells obtained from retinas of healthy human donors and of patients with retinal detachment and proliferative vitreoretinopathy. METHODS: Muller cells were enzymatically isolated from retinas of healthy donors and from excised retinal pieces of patients. The whole-cell and the cell-attached configurations of the patch-clamp technique were used to characterize the current densities of different K+ channel types and the activity of single Ca2+ -activated K+ channels of big conductance (BK). RESULTS: Cells from patients displayed a less negative mean membrane potential (-52.8 mV) than cells from healthy donors (-80.6 mV). However, the membrane potentials in cells from patients scattered largely between -6 and -99 mV. The inwardly rectifying K+ permeability in cells from patients was strongly reduced (0.3 pA/pF) when compared with cells from healthy donors (6.0 pA/pF). At the resting membrane potential, single BK channels displayed a higher mean activity (open probability, Po, and channel current amplitude) in cells from patients (Po, 0.30) than in cells from healthy donors (Po: 0.03). The variations of BK current amplitudes were correlated with the variations of the membrane potential. CONCLUSIONS: The dominant expression of inwardly rectifying channels in cells from healthy donors is thought to support important glial cell functions such as the spatial buffering of extracellular K+. The downregulation of these channels and the less negative mean membrane potential in cells from patients should impair spatial buffering currents and neurotransmitter clearance. The increased activity of BK channels may support the proliferative activity of gliotic cells via feedback regulation of Ca2+ entry and membrane potential.  (+info)

Src family kinases negatively regulate platelet-derived growth factor alpha receptor-dependent signaling and disease progression. (7/199)

We tested the hypothesis that Src family kinases (SFK) contribute to c-Cbl-mediated degradation of the platelet-derived growth factor (PDGF) alpha receptor (alphaPDGFR). Using either a receptor mutant that does not engage SFKs (F72/74), or cells that that lack SFKs, we found that SFKs contributed to degradation of the alphaPDGFR. Overexpression of c-Cbl also reduced the receptor half-life, but only if the receptor was able to engage SFKs. In cultured cells, prolonging the half-life of the receptor correlated with enhanced signaling and more efficient S phase entry, whereas accelerating receptor degradation had the opposite effect. Consistent with these tissue culture findings, there was a statistically significant increase in the onset of a proliferative retinal disease when animals were injected with cells expressing the F72/74 receptor, as compared with cells expressing the WT receptor. Our findings suggest that SFKs cooperate with c-Cbl to negatively regulate the alphaPDGFR, and that the SFK/c-Cbl suppression of alphaPDGFR output is relevant to the onset and progression of a proliferative disease.  (+info)

IL-10 and antibodies to TGF-beta2 and PDGF inhibit RPE-mediated retinal contraction. (8/199)

PURPOSE: Retinal pigment epithelial (RPE) cells are believed to play a pivotal role in the formation and contraction of epiretinal membranes in proliferative vitreoretinopathy (PVR). In the present study, an organ culture method was used that mimics the contractile stage of PVR, to investigate the contribution of a variety of growth factors in human RPE cell-mediated contraction of the retina. METHODS: Cultured human RPE cells were seeded onto bovine retinal explants. After attachment, cultures received one of the following exogenous growth factors: platelet-derived growth factor (PDGF)-AB, PDGF-BB, basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-beta1, TGF-beta2, or interleukin (IL)-10; or a neutralizing antibody to PDGF and/or TGF-beta2. Control explants were either untreated or received a null antibody. Contraction was assessed by image analysis and expressed as percentage reduction in retinal area. RESULTS: RPE cells produced a more than 50% contraction of the retina after 7 days in untreated samples. PDGF and TGF-beta2 stimulated RPE-mediated contraction by a further 20% at 100 ng/ml. IL-10 decreased contraction by 63%, whereas the other growth factors gave rise to similar contraction to untreated controls. Neutralizing antibodies against PDGF and TGF-beta2 reduced RPE-mediated contraction by up to 70% in comparison with untreated controls. The neutralizing antibodies also inhibited the effects of exogenous PDGF and TGF-beta2 on RPE-mediated contraction of the retina (P < 0.01). CONCLUSIONS: These findings confirm a role for both PDGF and TGF-beta2 in RPE cell-mediated contraction of the retina. Such contraction can be inhibited by neutralizing antibodies against PDGF and TGF-beta2, which, together with IL-10, are putative candidates for therapeutic intervention in PVR.  (+info)